
Page of 1 32 Paladin Blockchain Security

Smart Contract
Security Assessment

paladinsec.co info@paladinsec.co

Final Report

For Camelot (Nitro & Presale)
14 November 2022

Table of Contents 
 
Table of Contents	
2

Disclaimer	
3

1 Overview	
4

1.1 Summary	
4

1.2 Contracts Assessed	
4

1.3 Findings Summary	
5

1.3.1 NitroPool	
6

1.3.2 NitroPoolFactory	
6

1.3.3 Presale	
7

2 Findings	
8

2.1 NitroPool	
8

2.1.1 Privileged Functions	
11

2.1.2 Issues & Recommendations	
12

2.2 NitroPoolFactory	
20

2.2.1 Privileged Functions	
21

2.2.2 Issues & Recommendations	
22

2.3 Presale	
24

2.2.1 Privileged Functions	
26

2.2.2 Issues & Recommendations	 27

Page of 2 32 Paladin Blockchain Security

Disclaimer

Paladin Blockchain Security (“Paladin”) has conducted an independent audit to verify the integrity
of and highlight any vulnerabilities or errors, intentional or unintentional, that may be present in
the codes that were provided for the scope of this audit. This audit report does not constitute
agreement, acceptance or advocation for the Project that was audited, and users relying on this
audit report should not consider this as having any merit for financial advice in any shape, form or
nature. The contracts audited do not account for any economic developments that may be pursued
by the Project in question, and that the veracity of the findings thus presented in this report relate
solely to the proficiency, competence, aptitude and discretion of our independent auditors, who
make no guarantees nor assurance that the contracts are completely free of exploits, bugs,
vulnerabilities or deprecation of technologies. Further, this audit report shall not be disclosed nor
transmitted to any persons or parties on any objective, goal or justification without due written
assent, acquiescence or approval by Paladin.

All information provided in this report does not constitute financial or investment advice, nor
should it be used to signal that any persons reading this report should invest their funds without
sufficient individual due diligence regardless of the findings presented in this report. Information is
provided ‘as is’, and Paladin is under no covenant to the completeness, accuracy or solidity of the
contracts audited. In no event will Paladin or its partners, employees, agents or parties related to
the provision of this audit report be liable to any parties for, or lack thereof, decisions and/or
actions with regards to the information provided in this audit report.

Cryptocurrencies and any technologies by extension directly or indirectly related to
cryptocurrencies are highly volatile and speculative by nature. All reasonable due diligence and
safeguards may yet be insufficient, and users should exercise considerable caution when
participating in any shape or form in this nascent industry.

The audit report has made all reasonable attempts to provide clear and articulate
recommendations to the Project team with respect to the rectification, amendment and/or revision
of any highlighted issues, vulnerabilities or exploits within the contracts provided. It is the sole
responsibility of the Project team to sufficiently test and perform checks, ensuring that the
contracts are functioning as intended, specifically that the functions therein contained within said
contracts have the desired intended effects, functionalities and outcomes of the Project team.

Paladin retains full rights over all intellectual property (including expertise and new attack or
exploit vectors) discovered during the audit process. Paladin is therefore allowed and expected to
re-use this knowledge in subsequent audits and to inform existing projects that may have similar
vulnerabilities. Paladin may, at its discretion, claim bug bounties from third-parties while doing so. 

Page of 3 32 Paladin Blockchain Security

1	 	 Overview

This report has been prepared for Camelot on the Arbitrum network. Paladin
provides a user-centred examination of the smart contracts to look for
vulnerabilities, logic errors or other issues from both an internal and external
perspective.

1.1	 	 Summary

1.2	 	 Contracts Assessed

Project Name Camelot

URL https://app.camelot.exchange

Network Arbitrum

Language Solidity

Name Contract
Live Code
Match

NitroPool Deployed by NitroPoolFactory

NitroPoolFactory 0xe0a6b372Ac6AF4B37c7F3a989Fe5d5b194c24569

Presale 0x66eC1EE6c3AD04d7629Ce4a6d5d19ba99c365d29

MATCH

MATCH

MATCH

Page of 4 32 Paladin Blockchain Security

https://app.camelot.exchange

1.3	 	 Findings Summary

Classification of Issues

 

Severity Found Resolved
Partially
Resolved

Acknowledged
(no change made)

1 1 - -

2 2 - -

8 8 - -

8 6 - 2

Total 19 17 - 2

 Medium

 Informational

 Low

 High

Severity Description

Exploits, vulnerabilities or errors that will certainly or probabilistically lead
towards loss of funds, control, or impairment of the contract and its
functions. Issues under this classification are recommended to be fixed with
utmost urgency.

Bugs or issues that may be subject to exploit, though their impact is
somewhat limited. Issues under this classification are recommended to be
fixed as soon as possible.

Effects are minimal in isolation and do not pose a significant danger to the
project or its users. Issues under this classification are recommended to be
fixed nonetheless.

Consistency, syntax or style best practices. Generally pose a negligible level
of risk, if any.

 Informational

 Medium

 Low

 High

Page of 5 32 Paladin Blockchain Security

1.3.1	 NitroPool

1.3.2	 NitroPoolFactory

ID Severity Summary Status

01 _harvest is flawed in several ways if a user withdraws before
harvesting is allowed

02 onNFTHarvest might start reverting as it blindly attempts to forward
the full amounts

03 A malicious rewardsToken2 can be added after the pool is
published, blocking rewards and forcing emergency withdrawals

04 Lack of handling of ownership renunciation

05 emergencyWithdraw can still revert in the edge case that the
rewardDebt calculation overflows

06 isValidNFTPool will break if it is used on any pool other than
msg.sender

07 addRewards remains callable at the endTime while these rewards
may not be claimable

08 Lack of reentrancy guards on various functions

09 Contract does not support deposit fee tokens

10 Typographical errors and gas optimizations

LOW

MEDIUM

LOW

LOW

RESOLVED

RESOLVED

RESOLVED

INFO

RESOLVED

HIGH

RESOLVED

INFO

MEDIUM

RESOLVED

RESOLVED

LOW

RESOLVED

INFO

RESOLVED

RESOLVED

ID Severity Summary Status

11 Contract is not well suited for a create2 deployment pattern

12 Typographical errors

13 Gas optimization

RESOLVED

INFO

RESOLVEDINFO

RESOLVED

LOW

Page of 6 32 Paladin Blockchain Security

1.3.3	 Presale

ID Severity Summary Status

14 Any xGrail reapproval attempt will fail and permanently prevent
claiming on the contract

15 Users will be unable to claim grail if their xGrail amount is zero

16 Contract might not be compatible with all USDC deployments

17 Lack of validation

18 Gas optimizations

19 Typographical errors ACKNOWLEDGED

INFO

RESOLVED

RESOLVED

LOW

INFO

LOW

INFO

RESOLVED

LOW

ACKNOWLEDGED

RESOLVED

Page of 7 32 Paladin Blockchain Security

2	 	 Findings

2.1	 NitroPool

The NitroPool contracts are staking pools which emit extra rewards on top of the
rewards from locking an LP position into an NFTPool. The idea of the NitroPool is
that if your locked LP position meets certain requirements (such as lock duration),
you can then stake the locked LP position into the NitroPool for additional
rewards.

The NitroPool defines up to two additional reward tokens.

Deposits are made into the NitroPool simply by transferring your NFTPool NFT to it.
This transfer will solely succeed if the necessary requirements are met for the NFT:

- It must be from the correct NFT pool

- The lock duration must exceed the configured minimum

- The lock expiry must be after the configured minimum

- The lock amount must exceed the minimum configured amount

The pool will continuously emit deposited tokens until the configured endTime of
the pool to all stakers proportional to their staked amounts. Withdrawals can
however be made at any time. The contract also contains a safer emergency
withdrawal function which continues working even if various reward calculations for
any reason would start reverting.

When a deposit is made, the users receive approval for the token. This means that
they can still use their approval to freely operate on the token: harvest the
underlying pool, add to the position, etc. However, even though the approval would
typically allow them to transfer out the token, which would be undesirable, this is
prevented since NFTPool implementations revert on such transfers as transfers
from a contract can only be made if the operator is said contract.

Page of 8 32 NitroPool Paladin Blockchain Security

The pool owner can at any point make the pool whitelisted, which means that any
subsequent depositors can only deposit into the pool if they are whitelisted by the
owner.

For deposits to be enabled, the pool must have been published. This is done by the
pool owner when they call the publish function which can only be called once.
Various functions become more strict after a pool has been published:

- The custom requirements contract which adds additional safeguards on harvests
and deposits can no longer be changed unless it’s fully removed

- withdrawRewards can no longer be called, solely activateEmergencyClose

- Deposit requirements can only be adjusted to make the requirements more strict

- Most date settings can no longer be adjusted, only the endTime remains
extendable

Finally, the owner can define a date settings which limit the user: They can define
the last time where deposits are still allowed and they can define the earliest time
when harvests become available.

The full NitroPool process and how its encoded within the smart contract can be
seen in the following diagram:

Page of 9 32 NitroPool Paladin Blockchain Security

Page of 10 32 NitroPool Paladin Blockchain Security

2.1.1		 Privileged Functions

• withdrawRewards

• setRewardsToken2

• setCustomReqContract

• setRequirements

• setDateSettings

• setDescription

• setWhitelist

• resetWhitelist

• publish

• activateEmergencyClose

• transferOwnership

• renounceOwnership

Page of 11 32 NitroPool Paladin Blockchain Security

2.1.2	 Issues & Recommendations

Issue #01 _harvest is flawed in several ways if a user withdraws before
harvesting is allowed

Severity

Description _harvest is flawed in multiple ways: First of all, crucial logic to pay
out cached harvests is not triggered if the current pending is zero.
This means that if the user has cached a harvest and withdrawn
their position afterwards, they will not be able to harvest their
previously cached amount.

Secondly, a large error appears to occur on the following line:

Line 729

 if (_currentBlockTimestamp() < settings.harvestStartTime &&

canHarvest) {

This code is supposed to execute while no harvests are permitted,
eg. we are before the harvest start time. However, the second
parameter triggers when the customReqContract permits harvests.
It should therefore say !canHarvest.

Lastly, the canHarvest check is missing in the second reward token.

Recommendation Consider refactoring the _harvest function to always payout
pending rewards and to properly account for canHarvest.

Consider adding the canHarvest check to the second reward token.

Resolution

The recommended refactoring has been implemented.

RESOLVED

HIGH SEVERITY

Page of 12 32 NitroPool Paladin Blockchain Security

Issue #02 onNFTHarvest might start reverting as it blindly attempts to
forward the full amounts

Severity

Description The onNFTHarvest function blindly forwards the input amounts.
However, these amounts are not always granted to users. This is
because once the balance of the NFTPool runs too low, only the
remainder will be sent as rewards.

Recommendation Consider updating the NFTPool code to forward the actual amounts
sent to onNFTHarvest. This makes more sense in our opinion and
arguably should have been a recommendation if the NFTPool audit
had considered this usage.

Resolution

This was fixed as recommended within the NFTPool, which is out of
scope. This fix will be more formally attested within the live match
of that audit.

RESOLVED

MEDIUM SEVERITY

Issue #03 A malicious rewardsToken2 can be added after the pool is
published, blocking rewards and forcing emergency withdrawals

Severity

Description The NitroPool owner may add a second reward token at any time, as
long as one was not set previously. This presents a griefing risk
vector.

If the second reward token is malicious and reverts on transfer,
users will be unable to claim any rewards for either reward token. At
this point, the only way for a user to retrieve their NFT is via
emergency withdraw, forgoing earned rewards.

Recommendation Consider requiring the second reward token to be set prior to
publishing. This will allow users and the protocol frontend to do
appropriate due diligence on the pool’s tokens.

Resolution RESOLVED

MEDIUM SEVERITY

Page of 13 32 NitroPool Paladin Blockchain Security

Issue #04 Lack of handling of ownership renunciation

Severity

Location Line 391

function transferOwnership(address newOwner) public override

onlyOwner {

Description The codebase overrides the transferOwnership function with
custom logic which should always execute on ownership handover.
However, another method can be used for ownership handover as
well: renounceOwnership.

The latter is not overridden and the custom logic is hence not
executed here.

Recommendation Consider overriding the internal _transferOwnership instead.

Resolution

LOW SEVERITY

renounceOwnership is now handled as well, the external methods
are however overridden which is slightly less efficient.

RESOLVED

Page of 14 32 NitroPool Paladin Blockchain Security

Issue #05 emergencyWithdraw can still revert in the edge case that the
rewardDebt calculation overflows

Severity

Description The emergencyWithdraw function adjusts the rewardDebt by
adjusting it to the current debt excluding the withdrawn tokens.

However, if a bad token that could be infinitely minted was added as
a reward token, it is possible to increase the rewardDebt calculation
so much that the multiplication portion of it overflows and reverts.
This scenario would hence still block all withdrawals.

Recommendation Consider using tryMul instead with the rewardDebt calculation.
This way overflow can be handled explicitly within
emergencyWithdraw to allow the withdrawal to still succeed.

Resolution

LOW SEVERITY

A tryMul has been implemented. However, we need to point out
that the failure should still revert in deposit and withdraw as
currently it is ignored there. This should only be a risk for tokens
with a very large supply, in which case an exploiter could potentially
claim excessive rewards. Small supply tokens, eg. almost all normal
tokens in existence, should still not allow for exploitation.

RESOLVED

Page of 15 32 NitroPool Paladin Blockchain Security

Issue #06 isValidNFTPool will break if it is used on any pool other than
msg.sender

Severity

Location Line 244-247

modifier isValidNFTPool(address sender) {

 require(msg.sender == address(nftPool), "invalid

NFTPool");

 _;

}

Description The isValidNFTPool function takes in a sender function which is
unused. If this function is ever used with anything but the
msg.sender, this would cause severe malfunction.

Right now the sender is always msg.sender, so no user-facing
concerns arise.

Recommendation Consider using the sender parameter:

require(sender == address(nftPool), "invalid NFTPool");

Resolution RESOLVED

LOW SEVERITY

Issue #07 addRewards remains callable at the endTime while these rewards
may not be claimable

Severity

Location Line 402

require(_currentBlockTimestamp() <= settings.endTime, "pool

has ended");

Description If a harvest occurs at the last second of the emissions, addRewards
remains callable but these rewards will never be harvested.

Recommendation Consider making the check exclusive:

require(_currentBlockTimestamp() < settings.endTime, "pool

has ended");

Resolution

LOW SEVERITY

RESOLVED

Page of 16 32 NitroPool Paladin Blockchain Security

Issue #08 Lack of reentrancy guards on various functions

Severity

Description The codebase makes a strong attempt at safeguarding itself against
reentrancy. Even though no reentrancy exploits appear to be
possible, we will include an issue in good faith to allow the client to
harden their code further.

The following functions lack reentrancy guards:

- updatePool

- activateEmergencyClose

- setRewardsToken2 (optionally)

- setDateSettings (optionally)

Recommendation Consider adding reentrancy guards to the above functions.
activateEmergencyClose should also be adhere to the checks-
effects-interaction pattern.

Resolution

INFORMATIONAL

RESOLVED

Issue #09 Contract does not support deposit fee tokens

Severity

Description The contract does not work with deposit fee reward tokens. This is
because the addRewards function blindly assumes that the
transferred tokens have been received.

Recommendation Consider whether such tokens ever need to be supported. If so,
consider adding a before-after pattern to addRewards. Alternatively,
this issue will be resolved on the note that such tokens are not
permitted within this contract.

Resolution

The addRewards function now supports tokens with a fee on
transfer.

RESOLVED

INFORMATIONAL

Page of 17 32 NitroPool Paladin Blockchain Security

Issue #10 Typographical errors and gas optimizations

Severity

Description We have consolidated the typographical errors and the sections
which can be further optimized for gas usage below.

Line 95

IGrailTokenV2 grailToken_, IXGrailToken xGrailToken_,

address owner_, INFTPool nftPool_, address rewardsToken1_,

address rewardsToken2_, Settings calldata settings_

The tokens can be provided as IERC20 to avoid casting. Line 104
would then furthermore cast these addresses correctly.

Line 112

if (rewardsToken2_ != address(0)) {

This can in our opinion remain implicit which would save a few lines
(by always setting the token).

Line 120

if (settings_.harvestStartTime == 0)

settings.harvestStartTime = settings.startTime;

settings_ can be used on the right hand side to save some gas.

Line 228

accRewardsToken1PerShare_ =

rewardsToken1.accRewardsPerShare.add(rewardsAmount.mul(1e18)

.div(totalDepositAmount));

Consider incrementing the memory variable instead of re-fetching
the rewardsToken1.accRewardsPerShare from storage again. The
same can be set for line 233.

Line 395

emit TransferOwnership(newOwner);

This event is already emitted at a lower level by Ownable.

INFORMATIONAL

Page of 18 32 NitroPool Paladin Blockchain Security

Line 417

else delete customReqContract;

This can be simplified: The if statement appears to be completely
redundant as this deletion zeroes it out as well.

Line 495

if(contractAddress != address(0)){

The UpdatePool event emits a timestamp which seems redundant.

Recommendation Consider fixing the typographical errors.

Resolution RESOLVED

Page of 19 32 NitroPool Paladin Blockchain Security

2.2	 NitroPoolFactory

NitroPoolFactory is responsible for deploying new NitroPool instances. The
contract defines a defaultFee which is used as the default fee share percentage for
NitroPool rewards. This fee can be zeroed out if the factory owner marks the Nitro
pool or its owner as exempt.

The factory defines various other utilities which are used by the pools themselves. It
contains various enumerable sets which can be enumerated by the frontend. The
pool owner can finally set various global variables:

- defaultFee: Documented above

- feeAddress: The global Camelot governance address which receives the fees

- exemptedAddresses: The pool and owner addresses without a governance fee

- emergencyRecoveryAddress: The global Camelot governance address which
receives all reward tokens when activateEmergencyClose() is called by a pool
owner

It should be noted that anyone can create a NitroPool and the relevant parameters
to create such a pool are not validated. This means that malicious pools may exist
with malicious tokens (NFT/ERC20). The frontend should only display trusted
pools.

The full NitroPoolFactory process and how its encoded within the smart contract
can be seen in the following diagram:

Page of 20 32 NitroPoolFactory Paladin Blockchain Security

2.2.1	 Privileged Functions

• publishNitroPool [nitroPool, callable once]

• setNitroPoolOwner [nitroPool]

• setDefaultFee [owner]

• setFeeAddress [owner]

• setExemptedAddress [owner]

• setEmergencyRecoveryAddress [owner]

• transferOwnership

• renounceOwnership

Page of 21 32 NitroPoolFactory Paladin Blockchain Security

2.2.2	 Issues & Recommendations

Issue #11 Contract is not well suited for a create2 deployment pattern

Severity

Location Line 173

bytes32 salt = keccak256(abi.encodePacked(nftPoolAddress,

rewardsToken1, rewardsToken2, _currentBlockTimestamp()));

Description The NitroPool is deployed using a unique salt which is the input to
generate the relevant deployment address. However, as this salt is
based on an ever-changing deployment timestamp, there is very
little value to using a salt.

Typically, a deterministic deployment salt is used so that other
contracts can figure out the address of a pool without explicitly
having to ask the factory. However, since the timestamp is always
changing, this is simply impossible.

Recommendation Consider moving to a standard deployment pattern, and if so,
consider moving to a constructor for the NitroPool.

Resolution

LOW SEVERITY

A normal contract instantiation is now utilized.

RESOLVED

Page of 22 32 NitroPoolFactory Paladin Blockchain Security

Issue #12 Typographical errors

Severity

Description We have consolidated the typographical errors into a single issue to
keep the report brief and readable.

Line 6

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

This import appears to be unused.

Line 143

* @dev Returns an exemptedAddress from its "index"

This comment is wrongly copied as the relevant function returns
whether the address is exempted or not.

Recommendation Consider fixing the typographical errors.

Resolution RESOLVED

INFORMATIONAL

Issue #13 Gas optimization

Severity

Location Line 210

require(_ownerNitroPools[previousOwner].contains(msg.sender)

, "invalid owner");

Description It is sufficient to require the remove call as it returns a success
boolean as well.

Recommendation Consider implementing the gas optimization above.

Resolution

INFORMATIONAL

RESOLVED

Page of 23 32 NitroPoolFactory Paladin Blockchain Security

2.3	 Presale

The Presale contract is designed to sell a number of Grail tokens for a number of
SALE_TOKENs (presumably a stablecoin) as a public raise.

While the sale is active, users can call the buy function with the amount of
SALE_TOKEN (expected to be USDC) they wish to spend. If the user provides a
referral, 3% of those tokens will go to the referral while the remainder is always
immediately sent to the Camelot treasury. In exchange for these tokens, the user
receives presale allocation which they will be allowed to exchange for both Grail
and xGrail tokens after the sale has ended. Exactly 35% of the tokens eligible to a
user will be given as xGrail.

The presale is configured to distribute exactly 15,000 tokens in total, for a desired
total of 300,000 USDC. Each token is therefore sold at a price of $20. If more than
300,000 tokens have been sold, the price will be higher.

Finally, the team is free to assign a discount to specific users.

The number of Grail which will be distributed to users is capped via the
MAX_GRAIL_TO_DISTRIBUTE variable, which is reached once the
MIN_TOTAL_RAISED_FOR_MAX_GRAIL has been reached.

Page of 24 32 Presale Paladin Blockchain Security

This means that as long as there is small to moderate interest in the presale, users
will be paying a constant price. However, once more than the minimum for
maximum Grail has been reached, all users will pay an increasingly expensive price
as no further Grail will be emitted for new purchases:

Page of 25 32 Presale Paladin Blockchain Security

The full presale process and how it is encoded within the smart contract can be
seen in the following diagram:

2.2.1	 Privileged Functions

• setUsersDiscount

• emergencyWithdrawFunds

• burnUnsoldTokens

• transferOwnership

• renounceOwnership

Page of 26 32 Presale Paladin Blockchain Security

2.2.2	 Issues & Recommendations

Issue #14 Any xGrail reapproval attempt will fail and permanently prevent
claiming on the contract

Severity

Location Line 241-243

if (GRAIL.allowance(address(this), address(XGRAIL)) <

xGrailAmount) {

 GRAIL.safeApprove(address(XGRAIL), uint256(-1));

}

Description The safeApprove attempt will only work the first time it is called.
Subsequent calls will almost always fail as safeApprove by
OpenZeppelin is a notoriously annoying function:

require((value == 0) || (token.allowance(address(this),

spender) == 0), "SafeERC20: approve from non-zero to non-

zero allowance");

Recommendation Consider using a normal approval instead, or the recommended OZ
pattern:

GRAIL.safeApprove(address(XGRAIL), 0);

GRAIL.safeApprove(address(XGRAIL), type(uint256).max);

Note that we recommend using type(uint256).max as it is more
readable than uint256(-1).

Resolution

LOW SEVERITY

RESOLVED

Page of 27 32 Presale Paladin Blockchain Security

Issue #15 Users will be unable to claim grail if their xGrail amount is zero

Severity

Location Line 246

XGRAIL.convertTo(xGrailAmount, msg.sender);

Description The convertTo function reverts on zero amount. If the user
purchases an exceptionally small amount of tokens, the convertTo
here would revert as well and users would not be able to claim the
remaining Grail tokens.

Recommendation Consider either accepting this as users will never purchase such a
small amount, or consider adding a non-zero check in line with
correctness.

Resolution

LOW SEVERITY

RESOLVED

Issue #16 Contract might not be compatible with all USDC deployments

Severity

Location Line 45

uint256 public constant MIN_TOTAL_RAISED_FOR_MAX_GRAIL =

300000000000;

Description The contract presently assumes a USDC token with 6 decimals. If
the contract is ever used on a chain with a different number of
decimals for the stablecoin, the contract will misbehave and tokens
might all get sold for a fraction of the expected sale amount.

Recommendation Consider either carefully documenting this or scaling the value by
the decimals of the USDC to be safe.

Resolution

LOW SEVERITY

The contract now clearly documents it only works with a 6 decimal
USDC. The client and developers who fork this contract should of
course remain careful.

RESOLVED

Page of 28 32 Presale Paladin Blockchain Security

Issue #17 Lack of validation

Severity

Description The contract contains functions with parameters which are not
properly validated. Having unvalidated parameters could allow the
governance or users to provide variable values which are
unexpected and incorrect. This could cause side-effects or worse
exploits in other parts of the codebase.

Consider validating setUsersDiscount: The discount should be
validated to be smaller or equal to 100 if this is how it is supposed
to be used.

Recommendation Consider validating the function parameter mentioned above.

Resolution

The discount is now capped to 35%.

RESOLVED

INFORMATIONAL

Page of 29 32 Presale Paladin Blockchain Security

Issue #18 Gas optimizations

Severity

Description We have consolidated the sections which can be further optimized
for gas usage below.

Line 24

address ref;

By moving this address to right above hasClaimed, it will be packed
together with the hasClaimed boolean and save a storage slot,
which can reduce gas costs significantly. Optionally, discount could
also be packed in this slot as it would still fit in a uint8. This
discount can also be packed within the DiscountSettings struct.

Line 133-138

function grailToDistribute() public view returns (uint256){

 if (MIN_TOTAL_RAISED_FOR_MAX_GRAIL > totalRaised) {

 return

MAX_GRAIL_TO_DISTRIBUTE.mul(totalRaised).div(MIN_TOTAL_RAISE

D_FOR_MAX_GRAIL);

 }

 return MAX_GRAIL_TO_DISTRIBUTE;

}

totalRaised is read from storage twice, less of a big deal.

Recommendation Consider implementing the gas optimizations mentioned above.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Page of 30 32 Presale Paladin Blockchain Security

Issue #19 Typographical errors

Severity

Description We have consolidated the typographical errors into a single issue to
keep the report brief and readable.

Line 140-142

/**

* @dev Get user share times 1e5

*/

Line 194

// Readjust user new allocation

The lines above should state user’s.

claimRefEarnings and setUsersDiscount can be marked as
external. Note that we also recommend marking
claimRefEarnings as non-reentrant as well if there is a reentrancy
threat on buy.

Line 242

GRAIL.safeApprove(address(XGRAIL), uint256(-1));

A cleaner way to get the max uint256 is using type(uint256).max.

Line 283

function emergencyWithdrawFunds(address token, uint256

amount) external onlyOwner

token can be provided as an IERC20.

burnUnsoldTokens finally should emit an event (it should be noted
that it might also make sense to use safeTransfer within this
function).

Recommendation Consider fixing the typographical errors.

Resolution ACKNOWLEDGED

INFORMATIONAL

Page of 31 32 Presale Paladin Blockchain Security

Page of 32 32 Presale Paladin Blockchain Security

	Table of Contents
	Disclaimer
	1 Overview
	1.1 Summary
	1.2 Contracts Assessed
	1.3 Findings Summary
	1.3.1 NitroPool
	1.3.2 NitroPoolFactory
	1.3.3 Presale

	2 Findings
	2.1 NitroPool
	2.1.1 Privileged Functions
	2.1.2 Issues & Recommendations

	2.2 NitroPoolFactory
	2.2.1 Privileged Functions
	2.2.2 Issues & Recommendations

	2.3 Presale
	2.2.1 Privileged Functions
	2.2.2 Issues & Recommendations

