
Page of 1 87 Paladin Blockchain Security

Smart Contract
Security Assessment

paladinsec.co info@paladinsec.co

Final Report

For Camelot
30 October 2022

Table of Contents 
 
Table of Contents	
2

Disclaimer	
4

1 Overview	
5

1.1 Summary	
5

1.2 Contracts Assessed	
6

1.3 Findings Summary	
7

1.3.1 GrailTokenV2	
8

1.3.2 XGrailToken	
8

1.3.3 YieldBooster	
9

1.3.4 NFTPool	
9

1.3.5 NFTPoolFactory	
10

1.3.6 CamelotMaster	
11

1.3.7 CamelotFactory	
11

1.3.8 CamelotPair	
12

1.3.9 UniswapV2ERC20	
12

1.3.10 Math, SafeMath and UQ112x112	
12

1.3.11 CamelotRouter	
13

1.3.12 UniswapV2Library	
13

2 Findings	
14

2.1 Farm/GrailTokenV2	
14

2.1.1 Token Overview	
15

2.1.2 Privileged Functions	
15

2.1.3 Issues & Recommendations	
16

2.2 Farm/XGrailToken	
21

2.2.1 Privileged Functions	
22

2.2.2 Issues & Recommendations	
23

2.3 Farm/YieldBooster	
28

Page of 2 87 Paladin Blockchain Security

2.3.1 Privileged Functions	
28

2.3.2 Issues & Recommendations	
29

2.4 Farm/NFTPool	
33

2.4.1 Privileged Functions	
34

2.4.2 Issues & Recommendations	
35

2.5 Farm/NFTPoolFactory	
51

2.5.1 Issues & Recommendations	
52

2.6 Farm/CamelotMaster	
53

2.6.1 Privileged Functions	
53

2.6.2 Issues & Recommendations	
54

2.7 Core/CamelotFactory	
61

2.7.1 Privileged Functions	
61

2.7.2 Issues & Recommendations	
62

2.8 Core/CamelotPair	
66

2.8.1 Privileged Functions	
67

2.8.2 Issues & Recommendations	
68

2.9 Core/UniswapV2ERC20	
79

2.9.1 Issues & Recommendations	
80

2.10 Core/Math, SafeMath and UQ112x112	
81

2.10.1 Issues & Recommendations	
81

2.11 Periphery/CamelotRouter	
82

2.11.1 Issues & Recommendations	
83

2.12 Periphery/UniswapV2Library	
86

2.12.1 Issues & Recommendations	 86

Page of 3 87 Paladin Blockchain Security

Disclaimer

Paladin Blockchain Security (“Paladin”) has conducted an independent audit to verify the integrity
of and highlight any vulnerabilities or errors, intentional or unintentional, that may be present in
the codes that were provided for the scope of this audit. This audit report does not constitute
agreement, acceptance or advocation for the Project that was audited, and users relying on this
audit report should not consider this as having any merit for financial advice in any shape, form or
nature. The contracts audited do not account for any economic developments that may be pursued
by the Project in question, and that the veracity of the findings thus presented in this report relate
solely to the proficiency, competence, aptitude and discretion of our independent auditors, who
make no guarantees nor assurance that the contracts are completely free of exploits, bugs,
vulnerabilities or deprecation of technologies. Further, this audit report shall not be disclosed nor
transmitted to any persons or parties on any objective, goal or justification without due written
assent, acquiescence or approval by Paladin.

All information provided in this report does not constitute financial or investment advice, nor
should it be used to signal that any persons reading this report should invest their funds without
sufficient individual due diligence regardless of the findings presented in this report. Information is
provided ‘as is’, and Paladin is under no covenant to the completeness, accuracy or solidity of the
contracts audited. In no event will Paladin or its partners, employees, agents or parties related to
the provision of this audit report be liable to any parties for, or lack thereof, decisions and/or
actions with regards to the information provided in this audit report.

Cryptocurrencies and any technologies by extension directly or indirectly related to
cryptocurrencies are highly volatile and speculative by nature. All reasonable due diligence and
safeguards may yet be insufficient, and users should exercise considerable caution when
participating in any shape or form in this nascent industry.

The audit report has made all reasonable attempts to provide clear and articulate
recommendations to the Project team with respect to the rectification, amendment and/or revision
of any highlighted issues, vulnerabilities or exploits within the contracts provided. It is the sole
responsibility of the Project team to sufficiently test and perform checks, ensuring that the
contracts are functioning as intended, specifically that the functions therein contained within said
contracts have the desired intended effects, functionalities and outcomes of the Project team.

Paladin retains full rights over all intellectual property (including expertise and new attack or
exploit vectors) discovered during the audit process. Paladin is therefore allowed and expected to
re-use this knowledge in subsequent audits and to inform existing projects that may have similar
vulnerabilities. Paladin may, at its discretion, claim bug bounties from third-parties while doing so. 

Page of 4 87 Paladin Blockchain Security

1	 	 Overview

This report has been prepared for Camelot on the Arbitrum network. Paladin
provides a user-centred examination of the smart contracts to look for
vulnerabilities, logic errors or other issues from both an internal and external
perspective.

1.1	 	 Summary

Project Name Camelot

URL https://app.camelot.exchange

Network Arbitrum

Language Solidity

Page of 5 87 Paladin Blockchain Security

https://app.camelot.exchange

1.2	 	 Contracts Assessed

Name Contract
Live Code
Match

GrailTokenV2 0x3d9907F9a368ad0a51Be60f7Da3b97cf940982D8

XGrailToken 0x3CAaE25Ee616f2C8E13C74dA0813402eae3F496b

YieldBooster 0xD27c373950E7466C53e5Cd6eE3F70b240dC0B1B1

NFTPool Deployed by NFTPoolFactory

NFTPoolFactory 0x6dB1EF0dF42e30acF139A70C1Ed0B7E6c51dBf6d

CamelotMaster 0x55401A4F396b3655f66bf6948A1A4DC61Dfc21f4

CamelotFactory 0x6EcCab422D763aC031210895C81787E87B43A652

CamelotPair Deployed by CamelotFactory

UniswapV2ERC20 Dependency

Math Dependency

SafeMath Dependency

UQ112x112 Dependency

CamelotRouter 0xc873fEcbd354f5A56E00E710B90EF4201db2448d

UniswapV2Library Dependency

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

Page of 6 87 Paladin Blockchain Security

1.3	 	 Findings Summary

Classification of Issues

 

Severity Found Resolved
Partially
Resolved

Acknowledged
(no change made)

5 5 - -

7 7 - -

19 17 1 1

39 34 2 3

Total 70 63 3 4

 High

 Medium

 Low

 Informational

Severity Description

Exploits, vulnerabilities or errors that will certainly or probabilistically lead
towards loss of funds, control, or impairment of the contract and its
functions. Issues under this classification are recommended to be fixed with
utmost urgency.

Bugs or issues that may be subject to exploit, though their impact is
somewhat limited. Issues under this classification are recommended to be
fixed as soon as possible.

Effects are minimal in isolation and do not pose a significant danger to the
project or its users. Issues under this classification are recommended to be
fixed nonetheless.

Consistency, syntax or style best practices. Generally pose a negligible level
of risk, if any.

 Medium

 Low

 Informational

 High

Page of 7 87 Paladin Blockchain Security

1.3.1	 GrailTokenV2

1.3.2	 XGrailToken

ID Severity Summary Status

01 claimMasterRewards function is fundamentally flawed

02 GrailTokenV2 distributes emissions retroactively if emissions are
re-enabled after being set to zero

03 Governance risk: maxSupply can be changed to an infinitely large
number

04 Lack of validation

05 Typographical errors

RESOLVED

HIGH

MEDIUM
RESOLVED

INFO

RESOLVED

INFO RESOLVED

RESOLVED

INFO

ID Severity Summary Status

06 Redeem finalization is fundamentally flawed, allowing for an
exploiter to finalize a redeem multiple times

07 getGrailByVestingDuration() can revert due to division by zero

08 [Frontend] Phishing vulnerability for convertTo()

09 Excess XGrailToken will get stuck in the contract

10 Allocations during redemption are not captured in the
usageAllocations variable

11 _allocate and _deallocate lack usage whitelisting

12 Typographical errors and gas optimizations

RESOLVED

INFO

RESOLVEDINFO

LOW

RESOLVED

HIGH

RESOLVEDINFO

RESOLVED

RESOLVED

INFO RESOLVED

INFO

Page of 8 87 Paladin Blockchain Security

1.3.3	 YieldBooster

1.3.4	 NFTPool

ID Severity Summary Status

13 Anyone can boost any other user’s NFT without any form of
approval, allowing users to DoS the burning of NFTs

14 YieldBooster does not validate pools in any way

15 forceDeallocate() does not unboost the pool position and does
not properly function if the YieldBooster somehow gets out-of-sync
with the XGrailToken

16 Typographical errors

RESOLVED

INFO

INFO

RESOLVED

PARTIAL

MEDIUM

RESOLVED

LOW

ID Severity Summary Status

17 mergePositions allows anyone to steal other users positions and
harvests

18 Various functions including NFT transfers and updatePool are
missing reentrancy-guards

19 The mergePositions function is flawed and may delete the entire
positions

20 The destroyPosition function de-allocates from msg.sender
instead of whomever allocated the actual boost points

21 The transfer functions may have undesired side-effects with boosted
tokens

22 Harvests break if xGrailRewardsShare is ever set to zero

23 renewLockPosition and lockPosition do not work if the lock is
expired

24 _checkOnNFTHarvest is flawed for harvestPositionTo

25 Inconsistency: _harvestPosition does not update the boost
multiplier if isUnlocked is enabled

26 The createPosition function may create position with 0 amount
when using tokens with a fee on transfer

27 Typographical errors

28 Configurational issue: Parameters in initialize() function can be
malicious

29 _requireOnlyOperatorOrOwnerOf and
_requireOnlyApprovedOrOwnerOf are doing the same

MEDIUM

INFO

LOW

RESOLVED

RESOLVED

PARTIAL

RESOLVED

RESOLVED

LOW

INFO

RESOLVEDLOW

RESOLVED

RESOLVED

MEDIUM

RESOLVED

INFO

RESOLVED

LOW

MEDIUM

RESOLVED

HIGH

LOW

RESOLVED

LOW

RESOLVED

Page of 9 87 Paladin Blockchain Security

1.3.5	 NFTPoolFactory

30 Inconsistency: _safeRewardsTransfer avoids failure if contract has
insufficient but such checks are not present for the xGrail amount
that is harvested

31 Lack of validation

32 harvestPositionTo exposes a frontend-phishing vulnerability

33 harvestAllPositions, withdrawFromAllPositions and
mergePositions can run out of gas

34 _destroyPosition will revert in some edge-cases

35 splitPosition does not burn the position if its completely emptied

36 mergePositions is overprotective with the lock duration guards RESOLVED

RESOLVED

INFO

RESOLVED

INFO

ACKNOWLEDGED

INFO

RESOLVED

INFO

RESOLVED

INFO

INFO

RESOLVED

INFO

ID Severity Summary Status

37 create2 not checked against a zero response

38 _pools is private

RESOLVED

INFO RESOLVED

LOW

Page of 10 87 Paladin Blockchain Security

1.3.6	 CamelotMaster

1.3.7	 CamelotFactory

ID Severity Summary Status

39 massUpdatePool only updates the active pools, causing potentially
significant rewards to be distributed in hindsight if a pool is ever
reactivated

40 Configurational risk: YieldBooster

41 Newly added pools can dilute rewards retroactively

42 getPoolAddressByIndex and getActivePoolAddressByIndex are
uncallable due to a faulty guard clause

43 startTime is not aligned with startTime from GrailToken

44 Unused definition

45 _grailToken can be made immutable

46 getPoolInfo lacks a guard-clause

47 Lack of validation

48 Typographical errors

49 Lack of safeTransfer usage within _safeRewardsTransfer

RESOLVED

LOW

RESOLVED

ACKNOWLEDGED

RESOLVED

RESOLVED

RESOLVED

INFO

RESOLVED

RESOLVED

LOW

RESOLVEDINFO

ACKNOWLEDGED

INFO

INFO

RESOLVEDINFO

LOW

INFO

LOW

LOW

ID Severity Summary Status

50 The owner fee can be used to block deposits and withdrawals

51 Lack of events in the constructor

52 create2 success is unchecked (also present in Uniswap)

53 Typographical errors

54 Gas optimizationINFO

INFO

MEDIUM

INFO

RESOLVED

RESOLVED

RESOLVED

RESOLVED

RESOLVED

INFO

Page of 11 87 Paladin Blockchain Security

1.3.8	 CamelotPair

1.3.9	 UniswapV2ERC20

1.3.10	 Math, SafeMath and UQ112x112

No issues found. 

ID Severity Summary Status

55 MEV bots can drain one asset of the pair

56 Governance risk: Governance can drain the pairs

57 _k lacks overflow protection

58 initialize function lacks an additional safeguard

59 Some private variables should be made public

60 Various functions are not guarded against reentrancy

61 factory can be made immutable

62 Gas optimizations

63 Typographical errors

64 External calls after K check are undesired

RESOLVED

RESOLVED

RESOLVED

INFO

RESOLVED

LOW

LOW

MEDIUM

RESOLVED

RESOLVED

INFO

RESOLVEDHIGH

LOW

RESOLVED

RESOLVED

RESOLVEDHIGH

INFO

INFO

ID Severity Summary Status

65 permit can be frontrun to prevent someone from calling
removeLiquidityWithPermit (also present in Uniswap)

INFO RESOLVED

Page of 12 87 Paladin Blockchain Security

1.3.11	 CamelotRouter

1.3.12	 UniswapV2Library

No issues found. 

ID Severity Summary Status

66 The quote function returns erroneous values for the stableswap

67 receive() lacks a safeguard

68 Gas optimizations

69 The addLiquidity function does not properly support tokens with a
fee on transfer (also present in Uniswap)

70 Phishing Issue: A malicious or hacked frontend could adjust routes,
tokens or to parameters to steal tokens when users make swaps
(also present in Uniswap)

PARTIAL

LOW

RESOLVED

RESOLVED

ACKNOWLEDGED

LOW

RESOLVED

INFO

INFO

INFO

Page of 13 87 Paladin Blockchain Security

2	 	 Findings

2.1	 Farm/GrailTokenV2

GrailTokenV2 is the native token of the Camelot protocol and is used as a reward
token within the Masterchef contract. Unlike regular farming tokens, GrailTokenV2
handles the emission rate and emission distribution internally.

Once all necessary variables have been initialized, anyone can call
emitAllocations() which calculates the current emissions and the correct
allocation of emissions to various recipients based on the current emission rate.
One share is assigned to the Masterchef, and the other share is assigned to the
treasuryAddress. The treasury share is minted directly to the treasury.

The share for the Masterchef is minted to the GrailTokenV2 contract itself and can
then be distributed to the Masterchef via claimMasterRewards, which is callable
only by the MasterChef itself.

GrailTokenV2 uses a maxSupply variable which is defined within the constructor
and sets an upper limit for the minting of the token. However, the owner of this
contract has the ability to change the maxSupply with no upper-bound limit.

Page of 14 87 Farm/GrailTokenV2 Paladin Blockchain Security

2.1.1		 Token Overview

2.1.2	 Privileged Functions

- claimMasterRewards [onlyMaster]

- initializeMasterAddress [callable once]

- initializeEmissionStart [callable once]

- updateAllocation

- updateEmissionRate

- updateMaxSupply

- updateTreasuryAddress

- transferOwnership

- renounceOwnership 

Address TBC

Token Supply TBC

Decimal Places 18

Transfer Max Size None

Transfer Min Size None

Transfer Fees None

Pre-mints TBC

Page of 15 87 Farm/GrailTokenV2 Paladin Blockchain Security

2.1.3	 Issues & Recommendations

Issue #01 claimMasterRewards function is fundamentally flawed

Severity

Description Currently, the claimMasterRewards function calls emitAllocations
which emits the full outstanding allocation to this contract and
increments the masterReserve by that amount.

However, due to the general function flow, claimMasterRewards is
called by CamelotMaster during _updatePool. While
claimMasterRewards function claims the full amount, the
_updatePool function only requests the amount which is allocated
for one specific pool.

Unfortunately, claimMasterRewards sets the masterReserve
variable to zero, which makes it impossible for other pools to
receive their fair share.

Recommendation Consider simply deducting the effective amount from the
masterReserve.

Resolution

HIGH SEVERITY

The effective amount is now deducted from the masterReserve.

RESOLVED

Page of 16 87 Farm/GrailTokenV2 Paladin Blockchain Security

Issue #02 GrailTokenV2 distributes emissions retroactively if emissions are
re-enabled after being set to zero

Severity

Location Line 117-119

if (_maxSupply <= circulatingSupply || currentBlockTimestamp

<= _lastEmissionTime || _lastEmissionTime == 0 ||

emissionRate == 0) {

 return;

}

Description GrailTokenV2 allows for distributing emissions retroactively due
to an erroneous early return in the emission update function.

Path to vulnerability

1. Set emissions to zero

2. Wait a year

3. Set emissions to 1 token per second

4. 1 year of tokens will be emitted at 1 token per second

This functionality is present because the allocation rate adjusting
function will call emitAllocations in an attempt to bring the
lastEmissionTime variable up to date. However, due to the
aforementioned early return, this does not always happen. In these
cases, the new rate will apply retroactively.

Recommendation Consider adding a secondary if-statement that does adjust the last
emission time.

This issue also presents itself when the maximum cap is reached
and later incremented. Consider what needs to be done in this case.
The maximum cap could also return early upon the re-enabling of
the emission rate (1. reach max-cap, 2. re-enable emissions 3.
increment max cap, this path would still cause rewards to be
enabled in hindsight). Therefore, we recommend moving this check
to the updating section as well.

MEDIUM SEVERITY

Page of 17 87 Farm/GrailTokenV2 Paladin Blockchain Security

Code
Recommendation

if (currentBlockTimestamp <= _lastEmissionTime ||

_lastEmissionTime == 0) {

 return;

}

if (_maxSupply <= circulatingSupply || emissionRate == 0) {

 lastEmissionTime = currentBlockTimestamp;

 return;

}

Resolution

The recommended code was implemented.

RESOLVED

Issue #03 Governance risk: maxSupply can be changed to an infinitely large
number

Severity

Description The contract conveys the idea that the token has a fixed maxSupply.
However, since the owner can change the maxSupply without any
upper-bound limit, this is not the case.

Recommendation Consider communicating this probability openly to the users or
renaming the variable to a more transparent name.

Resolution

A hard cap of 200,000 tokens has been added.

RESOLVED

INFORMATIONAL

Page of 18 87 Farm/GrailTokenV2 Paladin Blockchain Security

Issue #04 Lack of validation

Severity

Description During the contract creation, the treasuryAddress_ parameter
lacks a non-zero validation. Additionally, initialSupply should be
validated to be smaller than maxSupply_ in order to not mint more
than the maximum supply.

Recommendation Consider adding a non-zero validation within the constructor to
align with the updateTreasuryAddress function.

Resolution

INFORMATIONAL

RESOLVED

Page of 19 87 Farm/GrailTokenV2 Paladin Blockchain Security

Issue #05 Typographical errors

Severity

Description We have consolidated the typographical errors into a single issue to
keep the report brief and readable.

Line 52

event EmitAllocations(uint256 masterShare, uint256

treasuryShare);

Starting an event name with Emit is rather redundant.

Line 65

* @dev Throws error if called by any account other than the

master or router

There is no functionality for the router within this contract.

Line 95

return uint256(100).sub(masterAllocation());

100 is considered a magic value here: Consider using the more
appropriate ALLOCATION_PRECISION.

masterEmissionRate can be made external.

Recommendation Consider fixing the typographical errors.

Resolution RESOLVED

INFORMATIONAL

Page of 20 87 Farm/GrailTokenV2 Paladin Blockchain Security

2.2	 Farm/XGrailToken

XGrailToken is a specialized token contract with several use-cases for its users.

Users can convert their Grail tokens to xGrail tokens at a 1:1 ratio at any time
using the convert function. xGrail as no maximum supply (other than Grail’s
maximum supply). Whitelisted addresses have the privilege to transfer the xGrail
tokens freely. For regular users, transfers of the xGrail token is limited to
whitelisted addresses.

Once a user has converted their GrailToken to the XGrailToken, the user can then
do two things with the XGrailToken:

1. The user can call the redeem() function to redeem xGrail back to Grail. This
creates a vesting position for the user with a user-configured vesting time. If the
user chooses to vest back over a longer duration, more Grail tokens are
received back. Although the duration and ratio can be adjusted by the contract
governance, a minimum duration of 15 days and a maximum duration of 90
days is configured initially. At 15 days, 50% is redeemed while at 90 days, 100%
would be redeemed. The remainder is burned and any vesting duration between
these two extremes would redeem a linear amount between 50% and 100%. 
 
During the whole vesting time, a portion of the vesting amount will be allocated
to a governance configured dividendAddress to receive dividends. At the start,
the percentage is configured at 50%. After the vesting time is over, finalization
of the vest removes the allocation and pays back the beforehand calculated
grailAmount which will never be above the original xGrail amount. The
difference between the calculated GrailAmount and XGrailAmount then simply
gets burned as the corresponding GrailToken.

2. The user can call the allocate() function with a specific usageAddress. This
function then also withdraws the amount of XGrailToken which was provided

Page of 21 87 Farm/XGrailToken Paladin Blockchain Security

by the user from the user and allocates these xGrail tokens to the provided
usageAddress. Unlike the previously mentioned function, this allows the user to
provide a variable usageAddress. Once the user decides to remove their
allocation, they can simply call deallocate() which removes the user’s
allocation on the usageContract and sends back the user's xGrail after a fee
(configurable up to 2% per usage) has been deducted. The fee amount
immediately gets burned in the contract as Grail tokens. This scenario can also
get called from the usageContract directly with the userAddress as the first
parameter. However, before the usageContract or the user can call this
function, the user must approve the userAddress with the desired amount via
approveUsage.

2.2.1	 Privileged Functions

• updateRedeemSettings

• updateDividendAddress

• updateDeallocationFee

• updateTransferWhitelist

• transferOwnership

• renounceOwnership

Page of 22 87 Farm/XGrailToken Paladin Blockchain Security

2.2.2	 Issues & Recommendations

Issue #06 Redeem finalization is fundamentally flawed, allowing for an
exploiter to finalize a redeem multiple times

Severity

Description The finalization of redeems is fundamentally flawed. Users can
request a redemption and finalize it after a certain delay. However,
if multiple people request a redemption at the same time, the
finalization will not actually delete the correct pending redemptions.
Instead, it always deletes the most recent one, regardless of who
finalized their redemption.

This means that an exploiter can redeem the same pending
redemption potentially many times.

RedeemInfo storage _redeem = userRedeems[msg.sender]

[redeemIndex];

[. . .]

_redeem = userRedeems[msg.sender]

[userRedeems[msg.sender].length - 1];

userRedeems[msg.sender].pop();

The reason for this vulnerability being possible is because the
developers incorrectly assumed that they can override the
redeemIndex by re-assigning to the variable.

However, when you re-assign a storage pointer, you simply point the
Solidity pointer to a new location. Nothing is actually written to
storage.

Recommendation Consider writing to storage instead:

userRedeems[msg.sender][redeemIndex] =

userRedeems[msg.sender][userRedeems[msg.sender].length - 1];

This should be done in all locations where this flow is utilized.

Resolution

The recommended code snippet has been implemented in an
internal function which is now always called.

RESOLVED

HIGH SEVERITY

Page of 23 87 Farm/XGrailToken Paladin Blockchain Security

Issue #07 getGrailByVestingDuration() can revert due to division by zero

Severity

Description Currently, the ratio is calculated as follows:

uint256 ratio =

minRedeemRatio.add((duration.sub(minRedeemDuration)).mul(max

RedeemRatio.sub(minRedeemRatio)) .div(maxRedeemDuration.sub(

minRedeemDuration))

If maxRedeemDuration and minRedeemDuration are equal, this
results in a function revert due to a division by zero.

Recommendation Consider keeping this edge-case in mind, we will also write out
another recommendation to validate the updateRedeemSettings
accordingly.

Resolution

LOW SEVERITY

These two values are no longer required to be equal.

RESOLVED

Issue #08 [Frontend] Phishing vulnerability for convertTo()

Severity

Description convertTo() exposes a to parameter which decides who will
receive the minted XGrailToken. If the frontend is ever
compromised, this can lead to stolen funds where the attacker sets
the to parameter to his own wallet.

Recommendation Our recommendation is to acknowledge this issue and keep the best
security standards for the website.

Alternatively, if this function is supposed to be used exclusively by
contracts, the code could validate that the msg.sender is a contract
to effectively lock out normal users.

Resolution

INFORMATIONAL

The convertTo function is now exclusively callable by contracts,
effectively negating any phishing concerns as users can no longer
call it. We commend the client for this pragmatic approach.

RESOLVED

Page of 24 87 Farm/XGrailToken Paladin Blockchain Security

Issue #09 Excess XGrailToken will get stuck in the contract

Severity

Description The _deallocate function deducts a deallocationFeeAmount from
the withdrawable XGrailToken balance:

uint256 deallocationFeeAmount =

amount.mul(usagesDeallocationFee[usageAddress]).div(10000);

This deallocationFeeAmount then gets burned as the
corresponding GrailToken, but the amount of XGrailToken will get
stuck in the contract.

Recommendation Consider also burning the excess amount of XGrailToken in the
contract.

Resolution

This amount is now burned as well.

RESOLVED

INFORMATIONAL

Issue #10 Allocations during redemption are not captured in the
usageAllocations variable

Severity

Description The contract allows for a part of redemptions to get allocated to a
dividends address. However, this part is not added to the
usageAllocations accounting variable that keeps track of the total
xGrail allocated to an address.

Recommendation Consider whether this is desired. If so, consider incrementing and
decrementing the accounting variable in all relevant functions
(redeem, finalizeRedeem, updateRedeemDividendsAddress and
cancelRedeem).

Resolution

The client has indicated that this behavior is desired. No change was
made.

RESOLVED

INFORMATIONAL

Page of 25 87 Farm/XGrailToken Paladin Blockchain Security

Issue #11 _allocate and _deallocate lack usage whitelisting

Severity

Description Presently the allocate and deallocate functions allow for users to
allocate and deallocate their xGrail to any contract of their
choosing. This might be considered a risk because it gives an
exploiter more attack surface than is strictly necessary.

For example, an exploiter might try abusing the the system by
setting usageAddress to xGrail itself. Within the allocate function,
the following line of code would then be called on xGrail.

function allocate(address usageAddress, uint256 amount,

bytes calldata usageData) external nonReentrant {

Obviously, this is not supposed to be callable from xGrail itself,
therefore a small privilege escalation would occur (this in fact would
revert due to the nonReentrant guard).

We did not find any direct exploits from this privilege escalation or
from providing a malicious usageAddress, however, it is never a
good idea to give exploiters a larger attack surface than is strictly
necessary.

Recommendation Consider adding a whitelist of valid usage addresses.

Resolution

INFORMATIONAL

No changes have been made as the client hopes that third parties
will start developing usages as well, and this should in fact be a
permissionless process.

We do remind the users that the attack surface vector is therefore
still a little bit larger than we would want it to be, however, no attack
methodology has been identified.

RESOLVED

Page of 26 87 Farm/XGrailToken Paladin Blockchain Security

Issue #12 Typographical errors and gas optimizations

Severity

Description We have consolidated the typographical errors and the sections
which can be further optimized for gas usage below.

Line 40

IGrailTokenV2 public grailToken;

grailToken can be made immutable.

Line 475

usageApprovals[userAddress][usageAddress] =

approvedXGrail.sub(amount, "allocate: non authorized

amount");

This error state seems unreachable — consider removing the error
message as it wastes gas (it is always allocated in memory).

The team can also consider whether it would make sense to also
make approveUsage nonReentrant. This way, all external functions
are nicely marked with nonReentrant.

Finally, it might make sense to consider not requiring users to
approve an allocation address in case they are going to allocate
themselves. This is similar to how the ERC20 transfer function does
not require approval, only transferFrom.

Line 488

* @dev Allocates "amount" of available xGRAIL to

"usageAddress" contract

The _deallocate comment should mention deallocates instead of
allocates.

Recommendation Consider fixing the typographical errors.

Resolution

INFORMATIONAL

RESOLVED

Page of 27 87 Farm/XGrailToken Paladin Blockchain Security

2.3	 Farm/YieldBooster

YieldBooster is responsible for the XGrailToken allocation. As previously
mentioned in the XGrailToken description, each user has the ability to allocate
their XGrail tokens to a specific usageAddress within the XGrailToken contract.

The YieldBooster contract represents this usageContract and allows users to
boost their positions in the NFTPool contracts and keeps track of a user’s total
allocation, a pool contract’s total allocation and a user’s specific allocation for a
pool contract and the specific NFTId.

2.3.1	 Privileged Functions

- updateForcedDeallocationStatus

- emergencyWithdraw

- transferOwnership

- renounceOwnership

Page of 28 87 Farm/YieldBooster Paladin Blockchain Security

2.3.2	 Issues & Recommendations

Issue #13 Anyone can boost any other user’s NFT without any form of
approval, allowing users to DoS the burning of NFTs

Severity

Description YieldBooster does not validate that a user is the rightful owner,
operator or approved wallet of an NFT they are boosting.

This might go against the general practice within NFTPool where
only _requireOnlyOperatorOrOwnerOf wallets can add to
positions.

This functionality seems to be especially problematic since
_destroyPosition unallocates the full position.boostPoint from
a single caller!

Recommendation Consider whether this is an issue, and if so, consider validating that
the user address adheres to _requireOnlyOperatorOrOwnerOf (it
could be provided as a parameter to boost for example).

Resolution

The client has indicated that this is in fact desired behavior.
However, they did not realize that _destroyPosition often breaks
in this case. The client has fixed this by only unstaking the position
amount which was allocated by the actual NFT owner. The other
stakers will need to unallocate themselves.

RESOLVED

MEDIUM SEVERITY

Page of 29 87 Farm/YieldBooster Paladin Blockchain Security

Issue #14 YieldBooster does not validate pools in any way

Severity

Description YieldBooster does not validate any pool addresses. This means
that a malicious user, the “exploiter”, will attempt to find ways to
abuse the contract by sending a malicious pool address to it.

Paladin did not find any vector (such as reentrancy) to abuse this
contract through a malicious contract but is a proponent of strictly
limiting the freedom which is given to exploiters. In this case, this
freedom can be and should be trivially reduced.

Recommendation Consider adding a _validatePool() function or similar which calls
the NFTPoolFactory and confirms that the address was deployed by
the pool factory. This should also be done with allocate,
deallocate and deallocateFromPool.

We strongly urge the team to implement this recommendation even
though we could not find any direct exploit methods for this.

Resolution

The client has indicated they desire these pools to not be validated
in case they want to adjust in the future. No changes have been
made.

Users should understand that the attack surface vector for
exploiters remains rather large, even though we did not find a way
to exploit this.

PARTIALLY RESOLVED

LOW SEVERITY

Page of 30 87 Farm/YieldBooster Paladin Blockchain Security

Issue #15 forceDeallocate() does not unboost the pool position and does
not properly function if the YieldBooster somehow gets out-of-
sync with the XGrailToken

Severity

Description Currently the forceDeallocate() function only allows the user to
receive his remaining share of XGrailToken without unwinding the
boost position within the assigned NFTPool. However, since we
expect this behavior is as desired, this issue is only marked as
informational.

Secondly, the balance which is unallocated to the XGrailToken is
presently based on the local YieldBooster value, this means that
there are certain call-paths where the YieldBooster will request to
remove too many tokens (if forceDeallocate is called twice).

Recommendation Consider using this function only in case of emergency.

The secondary issue can be resolved simply by revoking the current
allocation as returned by the XGrailToken. This makes the function
even more available as it will be guaranteed to always remove the
full allocation from the user to the YieldBooster.

uint256 amount = xGrailToken.usageAllocations(msg.sender,

address(this));

Resolution

The recommendation has been implemented.

RESOLVED

INFORMATIONAL

Page of 31 87 Farm/YieldBooster Paladin Blockchain Security

Issue #16 Typographical errors

Severity

Description We have consolidated the typographical errors into a single issue to
keep the report brief and readable.

Line 46

event EmergencyWithdraw(address caller, address token,

uint256 amount);

token can be provided as IERC20 to avoid casting the value later on.

Lines 70, 80

* returns multiplier * 1e2

These rates seem to be denominated in basis points (1e4) for now.

Recommendation Consider fixing the typographical errors.

Resolution

INFORMATIONAL

RESOLVED

Page of 32 87 Farm/YieldBooster Paladin Blockchain Security

2.4	 Farm/NFTPool

NFTPool is a unique staking contract which mints an NFT to the staker for each
staking position. Users then receive Grail and xGrail rewards for staking their
tokens for a certain lockup duration. The amount of rewards the user receives
increases with both the boost allocation the user has given to the NFT and the
duration the user has locked it for. spNFT represents the position, its amount and its
lock duration. The owner of it has full control over the position.

Each NFTPool has its own staking token and its own NFT. The NFTPool is deployed
through the NFTFactory contract with the following parameters, of which only the
first can be provided as a parameter:

- lpToken

- MasterChef

- GrailToken

- XGrailToken

Each NFTPool serves as a pool within CamelotMaster and needs to be added with
the correct allocationPoints in order to receive rewards.

Each staking position can get boosted by up to a configurable 250% via two
mechanisms:

- Using the boost point mechanism via xGrail allocation within the XGrailToken
contract to achieve an additional boostMultiplier. This allows users to
temporarily assign their xGrail tokens to the NFT to further boost it.

- Locking up the staking position for a predetermined duration to achieve a high
lockMultiplier. The longer the duration a user commits to, the higher their
multiplier (the multiplier increases linearly with the committed duration).

Page of 33 87 Farm/NFTPool Paladin Blockchain Security

Both multipliers, the lockMultiplier and the boostMultiplier, can individually
become as high as 150%, but only up to 250% combined. This is because the
contract sets individual caps and an aggregated cap.

Besides the usual features like topping up a position and withdrawing from a
position, this contract has some additional features which allows their users to
merge their staking position NFTs into one NFT and split one staking position in two
positions as well as relock their positions to achieve a higher lockMultiplier.

It should be noted that withdrawals are only available once the lock duration
expires, as is expected with a lock. However, users are free to sell their position
NFT over-the-counter at a discount. This means that the positions remain semi-
liquid, which is both interesting and innovative at the same time.

The well-known EmergencyWithdraw function can only be called if a lock has
expired, the caller is a privileged address or the contract activated the
emergencyUnlock feature.

2.4.1	 Privileged Functions

- setLockMultiplierSettings

- setBoostMultiplierSettings

- setXGrailRewardsShare

- setUnlockOperator

- setEmergencyUnlock

- setOperator

Page of 34 87 Farm/NFTPool Paladin Blockchain Security

2.4.2	 Issues & Recommendations

Issue #17 mergePositions allows anyone to steal other users positions and
harvests

Severity

Description The mergePositions function has a fundamental flaw in it which
allows a user to steal other users’ staking positions and merge it
with their own staking position as well as steal other users harvest:
it does not check if the caller is the owner of other tokenIds than
the first one provided in the array.

for (uint256 i = 1; i < length; ++i) {

 uint256 tokenId = tokenIds[i];

_requireOnlyOwnerOf(dstTokenId);

This should be _requireOnlyOwnerOf(tokenId);

This means that a malicious user can add an array of tokenIds
where he only needs to be the owner of the first tokenId in the
array.

A little blessing in disguise is the _destroyPosition call: If a staking
position is boosted, the call will fail due to an underflow within the
_deallocate function in the YieldBooster contract.

However, if the malicious user only chooses non-boosted staking
positions, the exploit will still work.

Recommendation Consider validating the owner correctly.

Resolution

HIGH SEVERITY

The check has been updated to check the actual tokenId.

RESOLVED

Page of 35 87 Farm/NFTPool Paladin Blockchain Security

Issue #18 Various functions including NFT transfers and updatePool are
missing reentrancy-guards

Severity

Description The contract is presently extremely conservative by adding
reentrancy guards to all unprivileged functions. This is defensive,
but good and desired given that the contract is complex and
contains various code locations which allow for reentrancy to occur.

However, the developer forgot to add such guards to a couple of
places:

- The various NFT transfer functions

- The updatePool function

This means that whenever a reentrancy opportunity presents itself,
the attacker can use it to transfer the NFT, potentially misleading
the system.

This has interesting consequences since the codebase caches the
nftOwner in various locations, while this owner could have changed
through reentrancy by the time it is used.

We failed to create a valid proof-of-concept within the current
codebase but one could conceptualize cases where a position is
listed on an NFT and a reentrancy vector is used to 1. accept a bid,
2. transfer the NFT back to the old owner.

Recommendation Consider adding reentrancy guards to all transfer functions and the
updatePool function.

Resolution

MEDIUM SEVERITY

Reentrancy guards have been added.

RESOLVED

Page of 36 87 Farm/NFTPool Paladin Blockchain Security

Issue #19 The mergePositions function is flawed and may delete the entire
positions

Severity

Description Currently, mergePositions loops over all given tokenIds after
dstTokenId. But it is possible to use duplicate tokenIds as
parameters, which will simply revert for most cases because the
position was already deleted and the NFT burned.

However, if the last tokenId is the same as the first one, it will
merge the two tokens together and delete it, resulting in a serious
loss for users as all its positions would have been merged together
and then at the end, deleting the entire position merged.

Recommendation Consider adding a proper validation.

The easiest way would be to use sorted token ids, and verifying that
lastTokenId < tokenIds[i] or to merge all positions to a new
NFT as it would revert on duplicated NFT id.

Resolution

MEDIUM SEVERITY

The client has only addressed the case where the first token is
duplicated, which should be sufficient as other cases already revert:

require(tokenId != dstTokenId, "invalid token id");

RESOLVED

Page of 37 87 Farm/NFTPool Paladin Blockchain Security

Issue #20 The destroyPosition function de-allocates from msg.sender
instead of whomever allocated the actual boost points

Severity

Location Line 400

IYieldBooster(yieldBooster()).deallocateFromPool(msg.sender,

tokenId, boostPointsToDeallocate);

Description Withdrawals of NFTs can occur by various users and not just the
owner of the NFT. However, if the NFT withdrawal withdraws the
full amount, _destroyPosition is called. Yet, this function always
tries to deallocate the boost points from msg.sender, who may not
be whoever allocated points to the NFT and may definitely not be
the NFT owner (eg. an approved wallet).

Recommendation Consider what should happen with boosts if the token is
transferred.

Resolution

Similar logic to the YieldBooster has been implemented where all
boost points of the msg.sender are deallocated and all other users
who allocated to the NFT, including potentially the owner, must
deallocate themselves.

RESOLVED

MEDIUM SEVERITY

Page of 38 87 Farm/NFTPool Paladin Blockchain Security

Issue #21 The transfer functions may have undesired side-effects with
boosted tokens

Severity

Description Presently, individuals boost tokenIds. However, when a token is
transferred, it is unclear what should happen with this boost and
various sections of the code may start reverting.

Recommendation Consider what should happen with boosts if the token is
transferred.

Resolution

LOW SEVERITY

The client has clarified this:

We want users to be able to transfer a boosted position without
unboosting it. A user can still get back his allocation once the
position has been transferred.

Given the further clarifications on how multiple people should be
permitted to boost a single tokenId, we are comfortable with this
behavior.

RESOLVED

Page of 39 87 Farm/NFTPool Paladin Blockchain Security

Issue #22 Harvests break if xGrailRewardsShare is ever set to zero

Severity

Description The xGrail token does not permit conversions of zero tokens.
However, _harvest tries to blindly convert the provided amount.
Since the governance can configure the percentage of a harvest that
is converted to xGrail, this means that they can never set the
percentage to zero.

if the conversion percentage is ever set to zero, the convertTo call
will fail.

Recommendation Consider wrapping the convertTo call in a non-zero check, or
consider not failing on zero within the convertTo function.

Resolution

LOW SEVERITY

convertTo is no longer called if the amount is zero.

RESOLVED

Issue #23 renewLockPosition and lockPosition do not work if the lock is
expired

Severity

Description These two functions are both calling the internal function
_lockPosition. However, if the lock has expired, the math in the
functions will fail due to an underflow.

Recommendation Consider adding logic that handles the expired case.

Resolution

Specific logic has been added.

RESOLVED

LOW SEVERITY

Page of 40 87 Farm/NFTPool Paladin Blockchain Security

Issue #24 _checkOnNFTHarvest is flawed for harvestPositionTo

Severity

Description _checkOnNFTHarvest currently checks if the owner of the NFT is
able to handle harvests. However, the harvestPositionTo function
exposes the to address as receiver.

Recommendation Consider thinking about if this is desired, if not consider changing
the logic to fit for harvestPositionTo.

Resolution

The client has indicated that this is desired.

RESOLVED

LOW SEVERITY

Issue #25 Inconsistency: _harvestPosition does not update the boost
multiplier if isUnlocked is enabled

Severity

Description _harvestPosition does not update the boost multiplier if
isUnlocked is enabled. However, throughout the codebase, when
the lockDuration is adjusted, such an update occurs.

Recommendation Consider whether this is desired, it might be desired to retain the
original boost in this case as the user might not have been okay with
this unlock. Alternatively, consider updating the boost multiplier
similarly to how its done in the rest of the codebase.

Resolution

This has been updated.

RESOLVED

LOW SEVERITY

Page of 41 87 Farm/NFTPool Paladin Blockchain Security

Issue #26 The createPosition function may create position with 0 amount
when using tokens with a fee on transfer

Severity

Location L440 

amount = _transferSupportingFeeOnTransfer(_lpToken,

msg.sender, amount);

Description createPosition currently checks that the amount parameter is
greater than zero, but fails to check it after the
_transferSupportingFeeOnTransfer is called. This may create
positions with 0 amount.

Recommendation Consider moving the amount check after the token has been
transferred. This check should also be added to addToPosition in
our opinion.

Resolution

LOW SEVERITY

The recommendation has been implemented.

RESOLVED

Page of 42 87 Farm/NFTPool Paladin Blockchain Security

Issue #27 Typographical errors

Severity

Description We have consolidated the typographical errors into a single issue to
keep the report brief and readable.

Line 46

address public operator; // Used to delegate some pool

features to project's owners

The operator is just a privileged address for the
setLockMultiplierSettings function.

Line 86

_grailToken.approve(address(_xGrailToken), uint256(-1));

We tend to prefer type(uint256).max instead of uint256(-1) to
denote the maximum integer value. This is simply because the
former properly communicates the fact that it's a maximum while
the latter is an underflow trick.

Line 153

* @dev Check if a userAddress is owner of a spNFT

This comment mentions a userAddress variable, however, the
function simply uses msg.sender instead. It should be noted that
this function presently does not check whether the NFT exists
either, which we believe is implicit behavior which should be
avoided.

Line 209

* @dev Returns true if emergency unlocks are activated on

this pool or on the master

This returns the latest minted NFT index. It should also be noted
that as long as no NFTs are minted, both the function name and this
description are inaccurate, renaming it to getTokensMinted might
be more accurate.

INFORMATIONAL

Page of 43 87 Farm/NFTPool Paladin Blockchain Security

Line 262

* @dev Returns expected multiplier for a "lockDuration"

duration lock (result is *1e2)

The result is in basis points (1e4) on our version.

Line 390

* @dev Set emergency unlock status for all pools

emergencyUnlock is only for all staking positions, not for all pools.

Line 558

* Can only be called by spNFT's owner

The harvestPositionTo function can be called by the owner but
also by an approved address.

Line 941

* @dev If "to" is a contract, confirm whether it's able to

handle rewards harvesting

This should say “If nftOwner is a contract”.

Line 953

* @dev If "to" is a contract, confirm whether it's able to

handle addToPosition

This should say “If nftOwner is a contract”.

Line 964

* @dev If "to" is a contract, confirm whether it's able to

handle withdrawals

This should say “If nftOwner is a contract”.

Recommendation Consider fixing the above errors.

Resolution RESOLVED

Page of 44 87 Farm/NFTPool Paladin Blockchain Security

Issue #28 Configurational issue: Parameters in initialize() function can be
malicious

Severity

Description Within the initialize function, _grailToken and _xGrailToken
can be freely set. If the deployer decides to set _grailToken as the
same token as the staking token and _xGrailToken to a malicious
contract which exposes a transferFrom feature, the deployer can
steal all deposited staking tokens.

Furthermore, it is important that all NFTPools solely get deployed
through the correct NFTPoolFactory, otherwise it would be possible
to call the initialize function twice and steal all tokens even if the
configuration was correct in the first point.

Recommendation Since the team is well established and this issue can be spotted
upfront, our recommendation is to simply acknowledge this issue
and pay attention to it during the contract configuration. A further
safeguard could be an initialize parameter to ensure the initialize
function can not be called twice.

Resolution

The client will be careful with setting the configuration values and
has added the guard to prevent re-initialization.

PARTIALLY RESOLVED

INFORMATIONAL

Page of 45 87 Farm/NFTPool Paladin Blockchain Security

Issue #29 _requireOnlyOperatorOrOwnerOf and
_requireOnlyApprovedOrOwnerOf are doing the same

Severity

Description Both functions are checking for the same condition, this increases
the contract size unnecessarily.

Recommendation Consider removing one of these functions.

Resolution

INFORMATIONAL

The client has indicated that there’s a slight difference in approval
flows with both of these contracts within the OpenZeppelin
implementation and wants certain functions to be protected by one
and others by another. No changes have been made.

RESOLVED

Issue #30 Inconsistency: _safeRewardsTransfer avoids failure if contract
has insufficient but such checks are not present for the xGrail
amount that is harvested

Severity

Description The client has added a safety check to the Grail amount that is sent
to the user on harvests: if the contract balance is insufficient, the
contract balance is sent instead. This avoids failure on insufficient
balances.

This check is however not present on the convertTo call which
means that harvests will still fail if the balance is insufficient.

Recommendation Consider adding a _safeConvertTo function similar to
_safeRewardsTransfer.

Resolution

A _safeConvertTo function has been added.

RESOLVED

INFORMATIONAL

Page of 46 87 Farm/NFTPool Paladin Blockchain Security

Issue #31 Lack of validation

Severity

Description Currently, the variable _maxLockDuration lacks a proper upper
validation. If this variable becomes too high, users would not be
able to receive a proper lockMultiplier.

_requireOnlyOwnerOf presently does not validate whether the NFT
exists.

createPosition presently does not validate that the lockDuration
does not exceed the maximum either. If users provide a greater
value, it currently does not seem to benefit them.

Recommendation Consider setting a reasonable upper limit for _maxLockDuration.

Resolution

INFORMATIONAL

The client has added the first check while keeping createPosition
unchecked, the latter has been done to allow derivative contracts to
lock for a longer duration. It is therefore desired.

RESOLVED

Issue #32 harvestPositionTo exposes a frontend-phishing vulnerability

Severity

Description All functions that handle the transfer of funds to a variable to
parameter are potential hacking vectors for phishing-attacks.

Recommendation Consider focusing on best-practices and security mechanisms for
the frontend.

Resolution

INFORMATIONAL

The NFT owner must now be a smart contract which mitigates all
phishing risk.

RESOLVED

Page of 47 87 Farm/NFTPool Paladin Blockchain Security

Issue #33 harvestAllPositions, withdrawFromAllPositions and
mergePositions can run out of gas

Severity

Description The harvestAllPositions functions can potentially run out of gas
if the user has too many staking positions.

Since it is unlikely that a single user has so many staking positions
that this function runs out of gas, we consider simply acknowledging
this issue. In the rare case of this happening, the user can then
simply use the harvestPosition function.

The same applies for the withdrawFromAllPositions function. The
mergePositions function will also run out of gas if the user adds
too many tokenIds.

Recommendation Consider recommending any affected user to use the alternative
functions.

Consider setting an upper limit for tokenIds within the
mergePositions function.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Page of 48 87 Farm/NFTPool Paladin Blockchain Security

Issue #34 _destroyPosition will revert in some edge-cases

Severity

Description Currently, the _destroyPosition function will revert under the
following circumstances:

1. stakingPosition A was created and boosted by Bob

2. Bob transferred stakingPosition A to Alice

3. Alice tries to mergePositions including stakingPosition A, or
Alice tries to withdraw her whole position.

4. Triggering _destroyPosition with boostPoints will result in an
underflow within the _deallocate function in the YieldBooster
contract.

Recommendation Consider either acknowledging this issue and simply recommend
calling the emergencyWithdraw function or adding logic that
supports this behavior.

Resolution

Only the tokens that are allocated by the sender will be unallocated
automatically now.

RESOLVED

INFORMATIONAL

Issue #35 splitPosition does not burn the position if its completely
emptied

Severity

Description Currently, splitPosition does not burn the origin position if it is
emptied. This will result in the user needing to call
emergencyWithdraw to be able to burn the position properly.

Recommendation Consider implementing logic for this case or simply not allowing the
position to get completely emptied.

Resolution

The splitAmount must now be strictly less than the
position.amount, which ensures that the final two tokens both
have value.

RESOLVED

INFORMATIONAL

Page of 49 87 Farm/NFTPool Paladin Blockchain Security

Issue #36 mergePositions is overprotective with the lock duration guards

Severity

Description Currently, the mergePositions function requires lock durations of
the merged NFTs to be strictly extended. However, if these NFTs
are nearly expired, they should theoretically only need to be
extended by the remaining lock amount.

Recommendation Consider whether it makes sense to require the unlock duration to
strictly increase instead. We can also happily resolve this issue on
the note that this is desired behavior or that the current behavior is
sufficient and simpler.

Resolution

INFORMATIONAL

The client would like to retain this logic on the following note:

The behavior is desired, as it avoids some edge cases while keeping
it relatively simple.

We agree that it is indeed simple and elegant, and are happy to
resolve the issue on this note. No changes have been made.

RESOLVED

Page of 50 87 Farm/NFTPool Paladin Blockchain Security

2.5	 Farm/NFTPoolFactory

This contract is a factory for NFT pools. It can deploy new NFT pools for an
underlying ERC20 lpToken with the createPool function. These pools are
initialized with the configured master, grailToken, xGrailToken and lpToken.

Anyone can call the createPool function, however, it can only be called once per
lpToken which means that each lpToken will have at most a single NFTPool
deployed by the factory.

Pools are deployed using deterministic deployment, which means that theoretically
contracts and off-chain tooling can know the addresses of pools beforehand and
without explicitly querying the NFTPoolFactory instance.

Page of 51 87 Farm/NFTPoolFactory Paladin Blockchain Security

2.5.1	 Issues & Recommendations

Issue #37 create2 not checked against a zero response

Severity

Description The create2 opcode returns the zero address on failure (revert,
already deployed, etc.).

Theoretically this could have side-effects within the factory if this
happens during a create2 call within the createPool call.

Recommendation Consider checking explicitly that the returned address is not
address(0). On more recent versions of Solidity, create2
deployments can be made in a safe way using new Contract{salt:
salt}().

Resolution RESOLVED

LOW SEVERITY

Issue #38 _pools is private

Severity

Description Important variables that third-parties might want to inspect should
be marked as public so that these third-parties can easily inspect
them through the explorer, web3 and derivative contracts.

Recommendation Consider marking the variable as public.

Resolution RESOLVED

INFORMATIONAL

Page of 52 87 Farm/NFTPoolFactory Paladin Blockchain Security

2.6	 Farm/CamelotMaster

CamelotMaster represents the pivotal point of the farm branch. The contract
aggregates all valid NFTPools and is responsible for the correct reward distribution.

CamelotMaster also sets the YieldBooster contract which is responsible for
calculating the boostPoint multiplier within each NFTPool, as well as the
emergencyUnlock variable which is globally used within all NFTPools and allows
withdrawals before the unlockTime has passed.

During the _updatePool of an NFTPool, the function claimRewards within
CamelotMaster is called which then updates the specific NFTPool and claims the
allocated rewards from the GrailTokenV2 via claimMasterRewards and then
transfers the reward amount to the NFTPool.

2.6.1	 Privileged Functions

- setYieldBooster

- setEmergencyUnlock

- add

- set

- transferOwnership

- renounceOwnership

- claimRewards [only pools added]

Page of 53 87 Farm/CamelotMaster Paladin Blockchain Security

2.6.2	 Issues & Recommendations

Issue #39 massUpdatePool only updates the active pools, causing potentially
significant rewards to be distributed in hindsight if a pool is ever
reactivated

Severity

Description Since the massUpdatePools function does only update the active
pools, this will lead to an issue in the following edge-case:

1. Set pool X´s allocation to zero

2. Use the contract as usual

3. Set pool X’s allocation to 100 with withUpdate = true

4. This will then update all pools besides pool X

5. Pool X will distribute rewards in hindsight

Recommendation Consider simply allow massUpdatePools to update all pools, or
fixing it by changing the lines 282 to 286 to:

if (withUpdate) {

	 _massUpdatePools();

	 if (allocPoint > 0 && !

_activePools.contains(poolAddress)) {

 	 _updatePool(poolAddress);

	 }

} else {

	 _updatePool(poolAddress);

}

One could arguably opt for simplicity over efficiency here and move
_updatePool outside of the if-else clause and remove the else
branch completely. The slight gas inefficiency here probably does
not outweigh the complexity a more complex section like the one we
recommend above adds.

Resolution

LOW SEVERITY

The client has opted for the simple and elegant solution of always
updating the pool after the mass update occurred.

RESOLVED

Page of 54 87 Farm/CamelotMaster Paladin Blockchain Security

Issue #40 Configurational risk: YieldBooster

Severity

Description The owner has the privilege to change the YieldBooster to any
address. If the YieldBooster is changed to a bad contract, this will
break various functions within the NFTPool contract.

Recommendation Consider acknowledging this issue and consider being careful with
changing the YieldBooster. It might make more sense to make the
YieldBooster upgradeable instead.

Resolution ACKNOWLEDGED

LOW SEVERITY

Issue #41 Newly added pools can dilute rewards retroactively

Severity

Description If a pool is newly added without withUpdate this will increase the
totalAllocPoint, diluting other pools rewards retroactively.

The same issue applies to the set function if the totalAllocPoint
changes too much (this applies in both directions).

Recommendation Consider always using withUpdate when adding new pools.

Resolution

The client has indicated that they will use this consistently. No
changes were made.

RESOLVED

LOW SEVERITY

Page of 55 87 Farm/CamelotMaster Paladin Blockchain Security

Issue #42 getPoolAddressByIndex and getActivePoolAddressByIndex
are uncallable due to a faulty guard clause

Severity

Description Both functions have a flawed index sanity check: 

if (index < _pools.length()) return address(0);

if (index < _activePools.length()) return address(0);

These functions will always return the zero address.

Recommendation Consider doing the check as follows:

if (index >= _activePools.length()) return address(0);

Resolution RESOLVED

LOW SEVERITY

Issue #43 startTime is not aligned with startTime from GrailToken

Severity

Description Currently, the startTime lacks a validation to ensure it is >=
startTime within GrailToken.

If CamelotMaster has its startTime before the startTime within
GrailToken, all pools that have been added receive less rewards
than expected during the first harvest.

Recommendation Consider validating the startTime parameter to be greater than the
startTime of the GrailToken.

Resolution

LOW SEVERITY

RESOLVED

Page of 56 87 Farm/CamelotMaster Paladin Blockchain Security

Issue #44 Unused definition

Severity

Location Line 23

using SafeERC20 for IERC20;

Description SafeERC20 is not used within the contract, however, we recommend
using safeTransfer instead of transfer.

Recommendation Consider using safeTransfer or removing the unused definition.

Resolution

This is now used.

RESOLVED

INFORMATIONAL

Issue #45 _grailToken can be made immutable

Severity

Description Variables that are only set in the constructor but never modified can
be indicated as such with the immutable keyword. This is
considered best practice since it makes the code more accessible
for third-party reviewers and saves gas.

Recommendation Consider marking the variable explicitly as immutable.

Resolution

INFORMATIONAL

RESOLVED

Page of 57 87 Farm/CamelotMaster Paladin Blockchain Security

Issue #46 getPoolInfo lacks a guard-clause

Severity

Description Currently, getPoolInfo lacks a check that a poolAddress exists. In
the case of a non-existent pool, this function will return incorrect
values.

Recommendation Consider adding a validatePool modifier to this function.

Resolution

The client has indicated that they desire this function to return zero
values in this instance.

RESOLVED

INFORMATIONAL

Issue #47 Lack of validation

Severity

Location Line 196

function add(INFTPool nftPool, uint256 allocPoint, bool

withUpdate) external onlyOwner

Description The contract lacks validation within the above function. If the pool
size becomes too large, massUpdatePools might run out of gas.

Recommendation Consider either adding an explicit limit to the number of active
nftPools or simply being careful when adding more pools.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Page of 58 87 Farm/CamelotMaster Paladin Blockchain Security

Issue #48 Typographical errors

Severity

Description We have consolidated the typographical errors into a single issue to
keep the report brief and readable.

Line 344

// claim expected rewards from master

It should say “claim expected rewards from the token”.

Line 73

event SetGrailToken(address grailToken);

This event is not used and should be removed or used in the
constructor.

Line 182

PoolInfo storage pool = _poolInfo[poolAddress_];

The pool should be memory to assert that this function will not affect
storage.

Line 238

require(!_pools.contains(poolAddress), "add: pool already

exists");

The validatePool modifier should be used here instead of
redefining the same requirement with a require statement.

Lines 341-342

uint256 rewards = currentBlockTimestamp

.sub(lastRewardTime) // nbSeconds

	 .mul(_grailToken.masterEmissionRate())

	 .mul(allocPoint)

	 .div(totalAllocPoint);

The emissionRate function should be used instead of redefining it
here.

Recommendation Consider fixing the typographical errors.

INFORMATIONAL

Page of 59 87 Farm/CamelotMaster Paladin Blockchain Security

Resolution

Most of these errors were fixed.

RESOLVED

Issue #49 Lack of safeTransfer usage within _safeRewardsTransfer

Severity

Description In the safeRewardsTransfer function, the transfer method is used
to transfer tokens. This will not work for tokens that return false
on transfer (or malformed tokens that do not have a return value).

Additionally, the require statement can then be removed.

Recommendation Consider using safeTransfer instead of transfer.

Resolution

INFORMATIONAL

RESOLVED

Page of 60 87 Farm/CamelotMaster Paladin Blockchain Security

2.7	 Core/CamelotFactory

The main responsibility of CamelotFactory is deploying the LP pair contracts. It
also stores all necessary variables for the fee structure and privileged functions
within the pair. The various privileged factory wallets can therefore adjust pair
parameters like the fee amount, fee receiver and whether a pair is a stable pair.

2.7.1	 Privileged Functions

- setOwner

- setFeeAmountOwner

- setSetStableOwner

- setFeeTo

- setOwnerFeeShare

- setRefererFeeShare

Page of 61 87 Core/CamelotFactory Paladin Blockchain Security

2.7.2	 Issues & Recommendations

Issue #50 The owner fee can be used to block deposits and withdrawals

Severity

Location Line 15

uint public constant OWNER_FEE_SHARE_MAX = 100000;

Description ownerFeeShare is validated to be smaller or equal to 100%.
However in the _mintFee function of the CamelotPair contract, line
134 would revert if ownerFeeShare > 50_000 with a division by
zero:

uint d = (FEE_DENOMINATOR / ownerFeeShare).sub(1);

Recommendation Consider ensuring that ownerFeeShare <= 50_000 or add decimals
and make sure that it cannot revert with a division by zero.

Resolution

MEDIUM SEVERITY

RESOLVED

Issue #51 Lack of events in the constructor

Severity

Description Functions that affect the status of sensitive variables should emit
events as notifications, this should also be the case in the
constructor.

Recommendation Add events in the constructor.

Resolution

A non-zero requirement has been added.

RESOLVED

INFORMATIONAL

Page of 62 87 Core/CamelotFactory Paladin Blockchain Security

Issue #52 create2 success is unchecked (also present in Uniswap)

Severity

Description If create2 fails for any reason, it will return address(0) — a correct
create2 implementation should always require the return address
to be non-zero.

As there appears to presently be no vector to make create2 fail,
this is raised as an informational issue. However, this could
theoretically change in a hard-fork.

It should be noted that we expect the initialize to fail in most cases
where no contract exists at the pair address.

Recommendation Consider validating that the created address is non-zero.

Resolution

INFORMATIONAL

RESOLVED

Page of 63 87 Core/CamelotFactory Paladin Blockchain Security

Issue #53 Typographical errors

Severity

Description We have consolidated the typographical errors into a single issue to
keep the report brief and readable.

Line 7

bytes32 public constant INIT_CODE_PAIR_HASH =

keccak256(abi.encodePacked(type(CamelotPair).creationCode));

The INIT_CODE_PAIR_HASH is unused and should be removed.

Line 25

event PairCreated(address indexed token0, address indexed

token1, address pair, uint);

The last parameter can be length.

Line 93

* @dev Updates the share of fees attributed to the owner

(FeeManager)

There is no FeeManager.

Line 110

function setRefererFeeShare(address referrer, uint

referrerFeeShare)

The function should be renamed setReferrerFeeShare.

Recommendation Consider fixing the typographical errors.

Resolution RESOLVED

INFORMATIONAL

Page of 64 87 Core/CamelotFactory Paladin Blockchain Security

Issue #54 Gas optimization

Severity

Description Currently the functions setOwnerFeeShare and
setRefererFeeShare are storing the old variable into memory to be
able to emit an appropriate event. However, as already done in the
earlier functions, the event can simply emitted before the variable is
changed:

emit OwnerFeeShareUpdated(ownerFeeShare,
newOwnerFeeShare);

Though we generally like to emit events after the update, it makes
sense to adjust these two functions to remain consistent with the
methodology used (and save some gas).

Recommendation Consider implementing the above suggestion.

Resolution RESOLVED

INFORMATIONAL

Page of 65 87 Core/CamelotFactory Paladin Blockchain Security

2.8	 Core/CamelotPair

CamelotPair is involved in storing the asset pairs in a contract for use by the router
to add and remove liquidity in equally-valued proportions and for swapping assets.
It is a fork of the Uniswap version of this contract but extends it with the following
features.

First of all, the pair has a configurational swap fee, which can be configured
differently for the two pair tokens up to 2% each. This fee is split between:

a. the referrerFee, which is globally set in the factory, individually for each
referrer and up to 20%.

b. the ownerFeeShare (only if stableSwap is true), which is set in the factory and
can be up to 100% of the remaining fees after referral fee was taken.

c. the mintFee (only if stableSwap is false), which is calculated based on the
ownerFeeShare within the mintFee function — this has the exact same purpose
of ownerFeeShare but saves gas by not sending out the protocol swap fee
percentage on each swap.

d. the remaining portion of the swap fee simply increases the LP pair value, as is
common within Uniswap V2.

Due to the arbitrary fee amount and the stableSwap feature, there are a lot
different fee results. Most notably for a stableSwap pair with maximized fees and a
referrer, the pair will send out 1,6% to feeTo and 0.4% to the referrer leaving no fee
in the pair for value accumulation. These fees will always be taken from the
inputToken.

Additionally, CamelotPair implements a stableSwap feature, which can be turned
on and off by the setStableOwner which is defined within the factory, a wallet
managed by the Camelot team. All pairs can be deployed by users but they will
always start off as simple Uniswap V2 pairs. It is up to the Camelot governance to

Page of 66 87 Core/CamelotPair Paladin Blockchain Security

decide whether they should become stable pairs. Once converted to a stable pair,
the curve of the pair is adjusted to a x3y+y3x curve as is famous from Solidly. If the
stableSwap feature is turned on, the governance swap fee logic is adjusted as the
traditional gas efficient manner of collecting swap fees is not possible on this new
curve. The pair will therefore not mint any liquidity tokens to the owner but instead
send a small fee amount during each swap to the feeTo address.

As already implemented in Camelot V1, sync() can only be called if there is a valid
ratio. This prevents an annoying exploit some owners have experienced where a
malicious party sends one of the tokens to the pair before liquidity is added and
calls sync(), thereby preventing the owner from adding liquidity through the
normal user interface (which in fact crashes in this scenario due to a division by
zero).

Another point to mention is that the Camelot factory owner's wallet can withdraw
all tokens that do not belong to the pair, which does not do any harm.

It should be noted for anyone reviewing this pair that the stableswap curve is
identical to the one used within Solidly. To validate the curve itself, third party
reviewers could therefore compare the _k function with the one used within Solidly,
though we do advise caution with such comparison as the actual swap function is
quite different from Solidly.

2.8.1	 Privileged Functions

- setFeeAmount

- setStableSwap

Page of 67 87 Core/CamelotPair Paladin Blockchain Security

2.8.2	 Issues & Recommendations

Issue #55 MEV bots can drain one asset of the pair

Severity

Description When a stable pair is changed to xy=k pair, an MEV bot can drain
the entire pair using flashbots (and a flashloan).

PoC:

Let’s say there is pair with 1M USDC and 1M USD

1. The owner queries a transaction to set the pair to stable

2. The transaction is detected in the mempool and a MEV bot
detects it and front runs it

3. The bot flashloans (from another protocol) and swaps 9M USDC
to USDT, he will receive 998K USDT

4. The transaction to set the pair to a xy=k market is executed

5. The bot swaps the 998K USDT he received to USDC and receive
9M98 USDC

6. USDC is almost drained, 1M USDT and 20K USDC and pair
exploited for half its TVL

The more USDC the MEV bot swaps, the more USDC it will receive
and the less USDC it will have at the end.

Recommendation Consider not allowing a stable pair to be set to a xy=k curve again.

A safety check could be added by checking that the reserves are in
the same range (let’s say +- 1%) of the parameters to change the
curve of a pool.

Finally, one could simply add reserve inputs to the function to
simply require the function to be called from a helper contract
which does more thorough rebalancing and safety checks.

Consider adding an immutable pair feature which, when set by your
team, prevents you from ever changing the pair type again on
specific pairs. Pairs with this feature set will assuage investors as
they know all vectors related to switching the pair type no longer
apply.

HIGH SEVERITY

Page of 68 87 Core/CamelotPair Paladin Blockchain Security

Resolution

The client has added strict validation to the function as was
recommended. When swapping over to a different pair type, the
pair must not have changed their reserves at all. This is perfect and
completely prevents MEV bots from sandwiching the curve change.
It will still be the careful responsibility of the team to make sure
those reserves are balanced when they swap over, as unbalanced
reserves still allow for back running.

Secondly, to assuage investors, the team has added the
recommended immutability feature and will be marking all core
pairs as immutable once they are configured. We recommend
investors to check that their specific pair is flagged as immutable to
be sure that the pair is fully decentralized.

RESOLVED

Page of 69 87 Core/CamelotPair Paladin Blockchain Security

Issue #56 Governance risk: Governance can drain the pairs

Severity

Description Currently, when switching a pair to the stable swap curve, kLast is
being calculated using the stableSwap method. However, when
switching back from stableSwap to !stableSwap, kLast is not being
reset to zero which allows governance to drain the pair.

PoC:

1. A pair is created as usual, with stableSwap turned off.

2. Basic operations are done with the pair to ensure kLast != 0.

3. Now stableSwap is activated, which decreases kLast
significantly.

4. More basic operations are done (this step is not necessary),
during this time, kLast does not change but the reserves
increase.

5. stableSwap is being turned off which will trigger _mintFee in
various functions

6. Trigger _mintFee by executing any liquidity event: _mintFee will
then calculate an absurd amount to be minted to feeTo due to
the heavy delta between reserve0*reserve1 and kLast.

7. feeTo can simply break the pair which it received and then drain
it.

However, there is another way for the governance to drain the pair
by changing an imbalanced pair, like BTC/USDC, to a stable pair as
it would be very profitable to swap USDC to BTC.

PoC:

1. Let’s say there is pair with 2M USDC and 100 BTC, so BTC is
$20K

2. Governance sets the BTC/USDC pair to a stable pair

3. Governance swaps 500K USDC and receive 49.8 BTC that are
worth 996K

4. Governance stole 496K in a pool with a TVL of $4M.

HIGH SEVERITY

Page of 70 87 Core/CamelotPair Paladin Blockchain Security

The fact that the governance can arbitrarily change the curve type is
therefore a governance risk. The way this is addressed in Curve, a
protocol with variable curve gradients, is by slowly adjusting the
gradient over time, instead of all at once. This is of course difficult
to accomplish with the current design.

Recommendation Consider fixing the above issues:

To fix the first issue, kLast should be set to zero when stableSwap
is being turned off. This will ensure that _mintFee can not mint an
absurd amount to feeTo.

To fix the latter, one method could be to set an _immutable variable
so that when this variable is set to true, no change of the curve can
be done anymore. As most users will invest in the incentivized
pools, we would strongly recommend to make the incentivized
pools immutable, safeguarding most of the TVL against governance
attacks and potential configurational issues.

Resolution

The team has added the recommended immutability feature and
will be marking all core pairs as immutable once they are
configured. We recommend investors to check that their specific
pair is flagged as immutable to be sure that the pair is fully
decentralized.

Secondly, the k adjustment has been fixed as was recommended.

RESOLVED

Page of 71 87 Core/CamelotPair Paladin Blockchain Security

Issue #57 _k lacks overflow protection

Severity

Description _k lacks overflow protection. Especially in the case of stableswaps,
this might cause the pairs for certain stablecoin pairs to misbehave.
This would be especially problematic for stablecoins which are
pegged to a much smaller denomination, eg. 1 wei (hypothetically). 
 
If an overflow were to occur in _k, the pair could completely
malfunction and allow for unfavorable swaps to occur.

Recommendation Consider using SafeMath consistently throughout the whole pair.

Resolution

This section now uses SafeMath.

RESOLVED

MEDIUM SEVERITY

Issue #58 initialize function lacks an additional safeguard

Severity

Description Currently, the initialize function is safeguarded with msg.sender
= factory. This is standard practice and ensures that it cannot be
called twice due to the logic in the factory.

However, if these contracts are ever forked and the factory is
customized or made upgradeable, this will expose the risk of calling
initialize twice, which might result in a rug.

Recommendation Consider adding an initialized = false requirement and set it to
true after the function is executed.

Resolution

LOW SEVERITY

The safeguard variable has been added.

RESOLVED

Page of 72 87 Core/CamelotPair Paladin Blockchain Security

Issue #59 Some private variables should be made public

Severity

Location Line 30

uint private _decimals0;

Line 31

uint private _decimals1;

Description Important variables that third-parties might want to inspect should
be marked as public so that these third-parties can easily inspect
them through the explorer, web3 and derivative contracts.

Recommendation Consider making the variables explicitly public.

Resolution

LOW SEVERITY

RESOLVED

Issue #60 Various functions are not guarded against reentrancy

Severity

Description Though extremely minor as these functions are governance
functions, setFeeAmount, setStableSwap and drainWrongToken all
lack a lock modifier. A malicious governance might try to reenter in
these functions during a swap to attempt to abuse logic within the
swap contract through an ad-hoc variable change.

We’ve not dived into specific vectors or whether it is feasible to
attack the pair using privileged reentrancy, but as there is little cost
to adding the modifier we see no downside as it will assuage
investors.

Recommendation Consider adding the lock modifier to all unlocked functions
(presently only governance functions remain) to assuage investors.

Resolution

LOW SEVERITY

All functions are now strictly guarded with reentrancy guards,
including the governance functions.

RESOLVED

Page of 73 87 Core/CamelotPair Paladin Blockchain Security

Issue #61 factory can be made immutable

Severity

Description Variables that are only set in the constructor but never modified can
be indicated as such with the immutable keyword. This is
considered best practice since it makes the code more accessible
for third-party reviewers and saves gas.

Recommendation Consider making the factory immutable. Consider double checking
that this still allows for the “partial match” to work in the explorer.

We do understand if you prefer to keep it as an address to be
consistent with Uniswap.

Resolution

INFORMATIONAL

The client has retained this as a storage variable since immutable
variables are not yet available with this version of Solidity.

RESOLVED

Page of 74 87 Core/CamelotPair Paladin Blockchain Security

Issue #62 Gas optimizations

Severity

Description We have consolidated the sections which can be further optimized
for gas usage below.

Lines 97 and L117

97 emit FeeAmountUpdated(token0FeeAmount, token1FeeAmount);

117 emit Sync(reserve0, reserve1);

The FeeAmountUpdated and Sync events should use the parameters
instead of reloading values from storage to save gas. Consider using
the following implementation instead:

97 emit FeeAmountUpdated(newToken0FeeAmount,

newToken1FeeAmount);

117 emit Sync(balance0, balance1);

Recommendation Consider implementing the gas optimizations mentioned above.

Resolution RESOLVED

INFORMATIONAL

Page of 75 87 Core/CamelotPair Paladin Blockchain Security

Issue #63 Typographical errors

Severity

Description We have consolidated the typographical errors into a single issue to
keep the report brief and readable.

Line 6

import ‘./libraries/UQ112x112.sol';

Line 13

using UQ112x112 for uint224;

UQ112x112 is not used within the contract therefore these two lines
be removed.

address public factory;

factory can be cached to ICamelotFactory. We do understand if you
prefer to keep it as an address for Uniswap compliancy.

Line 19

address public token0;

token0 can have the type IERC20. We do understand if you prefer
to keep it as an address for Uniswap compliancy.

Line 20

address public token1;

token1 can have the type IERC20. We do understand if you prefer to
keep it as an address to be consistent with Uniswap.

Line 87

* @dev Updates the swap fees amount

This function updates the swap fee percentages, not the raw
amounts. A comment below it also indicates the factory owner can
call it but only the feeAmountOwner of the factory can call it.

INFORMATIONAL

Page of 76 87 Core/CamelotPair Paladin Blockchain Security

Lines 210 and 218

TokensData memory tokensData;

tokensData memory is allocated implicitly. From the compiler’s
perspective, this memory will temporarily point to a spot in memory
which is supposed to be kept at zero. The only way this spot can
ever be non-zero is through bad assembly code, which is not
present here. However, in line with being extra careful we still
recommend you to explicitly initialize the tokensData memory
immediately by setting it to an explicit value right away:

TokensData memory tokensData = TokensData({

 token0: token0,

 token1: token1,

 amount0Out: amount0Out,

 amount1Out: amount1Out,

 balance0: 0,

 balance1: 0,

})

The skim function presently lacks an event.

The decimals variables are in fact precision multipliers, not a
decimal number.

Recommendation Consider fixing the above typographical errors.

Resolution RESOLVED

Page of 77 87 Core/CamelotPair Paladin Blockchain Security

Issue #64 External calls after K check are undesired

Severity

Description The pair makes several external calls after the K check occurs. This
makes formal verification of the pair behavior impossible as
theoretically these external calls could cause the invariant to be
broken.

This is raised as an informational issue as tokens which adjust their
balances like this would likely not be suited for the dex anyways.

Recommendation Consider, if you prefer idiomatic code, to do a secondary invariant
increase check before the _update function is called, and always
using fresh balances (right now they are not always fresh). Such a
safeguard would further harden the safety of the pair and permit for
more formal verification methods.

Resolution

The k check has been refactored to the bottom of the _swap. We
recommend extremely careful testing.

RESOLVED

INFORMATIONAL

Page of 78 87 Core/CamelotPair Paladin Blockchain Security

2.9	 Core/UniswapV2ERC20

UniswapV2Erc20 is an implementation of the ERC-20 Token Standard for
denominating pool tokens. It is a fork of Uniswap’s UniswapV2ERC20 contract.

Page of 79 87 Core/UniswapV2ERC20 Paladin Blockchain Security

2.9.1	 Issues & Recommendations

Issue #65 permit can be frontrun to prevent someone from calling
removeLiquidityWithPermit (also present in Uniswap)

Severity

Description If permit is executed twice, the second execution will revert. It is
thus in theory possible for a bot to pick up permit transactions in
the mempool and execute them before a contract can.

The implications of this issue is that a bad actor could prevent a
user from removing liquidity with a permit through the router. It is a
denial of service attack which is present in all AMMs but which we
have yet to witness being used since there is no profit from it.

Recommendation Consider this issue if there are ever complaints by users that their
removeLiquidityWithPermit transactions are failing. It could be
the case that someone is using this vector against them. We do not
recommend changing this behavior since it would cause a lot of
extra work modifying the frontend to account for the new permit
behavior. This issue is also present in Uniswap after all.

Resolution

INFORMATIONAL

The client has indicated that they understand this issue and will
mitigate it through the interface layer of the router once it starts
presenting itself.

RESOLVED

Page of 80 87 Core/UniswapV2ERC20 Paladin Blockchain Security

2.10	 Core/Math, SafeMath and UQ112x112

Math, SafeMath and UQ112x112 are various helper libraries which are each identical
to the Uniswap implementation.

2.10.1	 Issues & Recommendations

No issues found. 

Page of 81 87 Core/Libraries Paladin Blockchain Security

2.11	 Periphery/CamelotRouter

CamelotRouter is a fork of the UniswapV2Router with slight modifications. It is the
main interface for clients to interact with the Camelot DEX.

Compared to the UniswapV2Router, all normal swap functions have been removed:

- swapExactTokensForTokens

- swapTokensForExactTokens

- swapExactETHForTokens

- swapTokensForExactETH

- swapExactTokensForETH

- swapETHForExactTokens

- _swap

Therefore, the contract was simplified by only using the fee on transfer methods,
which is not a problem as the functions would also work on normal tokens without
such fees. The only limitation is that the user has no option to input an amount and
receive an exact output amount as is possible with the traditional Uniswap router by
using swapETHForExactTokens or swapTokensForExactTokens.

Finally, a referral mechanism was implemented within the contract: all swap
methods have an additional referrer parameter which then gets passed to the pair’s
swap function and results in a referral fee which is paid to the referrer (if the fee is
existent).

Page of 82 87 Periphery/CamelotRouter Paladin Blockchain Security

2.11.1	 Issues & Recommendations

Issue #66 The quote function returns erroneous values for the stableswap

Severity

Description The quote function within the Uniswap router is supposed to give
the swap result without any slippage or fees.

However, presently the router uses traditional Uniswap V2 math to
calculate this value, resulting in a wrongful output for stableswap
pairs.

Recommendation Consider adjusting this function to use the pair values or consider
documenting this behavior.

Be careful not to adjust the library for quote as the addLiquidity
function uses quote to proportionally add liquidity (it should
therefore remain unchanged within the library).

Resolution

The client has updated the documentation of this function to better
indicate their behavior.

RESOLVED

LOW SEVERITY

Issue #67 receive() lacks a safeguard

Severity

Description Currently, the receive() fallback function is callable by everyone.
However, it should only be callable by the WETH contract within the
withdraw function.

If it is called by anyone else, the Ether will just get stuck in the
contract.

Recommendation Consider safeguarding the receive() function appropriately.

Resolution RESOLVED

LOW SEVERITY

Page of 83 87 Periphery/CamelotRouter Paladin Blockchain Security

Issue #68 Gas optimizations

Severity

Description Currently, the lock modifier is used for the following functions:

- swapExactTokensForTokensSupportingFeeOnTransferTokens

- swapExactETHForTokensSupportingFeeOnTransferTokens

- swapExactTokensForETHSupportingFeeOnTransferTokens

All of these functions call the swap function within the pair. Since
this function is already safeguarded with a lock modifier, the present
modifier can be removed from this contract.

Recommendation Consider removing the lock modifier.

Resolution RESOLVED

INFORMATIONAL

Issue #69 The addLiquidity function does not properly support tokens with
a fee on transfer (also present in Uniswap)

Severity

Description addLiquidity always assumes tokens are not reflective. If liquidity
is added where one of the tokens has a fee on transfer, tokens will
be wasted to the pair.

You can read more about this issue here: https://github.com/
Uniswap/v2-periphery/issues/106

Recommendation Consider implementing the approach described within issue 106 of
v2-periphery or acknowledging this issue.

Resolution ACKNOWLEDGED

INFORMATIONAL

Page of 84 87 Periphery/CamelotRouter Paladin Blockchain Security

https://github.com/Uniswap/v2-periphery/issues/106

Issue #70 Phishing Issue: A malicious or hacked frontend could adjust routes,
tokens or to parameters to steal tokens when users make swaps
(also present in Uniswap)

Severity

Description A malicious, e.g. compromised, frontend can easily mislead users
into approving malicious transactions, even if the router matches
the address described in this report.

An trivial example of how this can be done is by changing the to
parameter which indicates to whom tokens or liquidity has to be
sent. Other ways to phish could include using malicious routes or
tokens.

Recommendation Consider carefully protecting the frontend and ideally having an
unchangeable IPFS fallback implementation for it.

Users should also verify that they are on the correct website when
doing a swap.

Resolution

INFORMATIONAL

The client has indicated they will carefully set up their frontend to
minimize the risk of compromise.

PARTIALLY RESOLVED

Page of 85 87 Periphery/CamelotRouter Paladin Blockchain Security

2.12	 Periphery/UniswapV2Library

UniswapV2Library is used to perform some common calculations like the amount
received from a swap. The Camelot team has slightly modified it to work with the
variable swap fee.

2.12.1	 Issues & Recommendations

No issues found. 

Page of 86 87 Periphery/UniswapV2Library Paladin Blockchain Security

Page of 87 87 Periphery/UniswapV2Library Paladin Blockchain Security

	Table of Contents
	Disclaimer
	1 Overview
	1.1 Summary
	1.2 Contracts Assessed
	1.3 Findings Summary
	1.3.1 GrailTokenV2
	1.3.2 XGrailToken
	1.3.3 YieldBooster
	1.3.4 NFTPool
	1.3.5 NFTPoolFactory
	1.3.6 CamelotMaster
	1.3.7 CamelotFactory
	1.3.8 CamelotPair
	1.3.9 UniswapV2ERC20
	1.3.10 Math, SafeMath and UQ112x112
	1.3.11 CamelotRouter
	1.3.12 UniswapV2Library

	2 Findings
	2.1 Farm/GrailTokenV2
	2.1.1 Token Overview
	2.1.2 Privileged Functions
	2.1.3 Issues & Recommendations

	2.2 Farm/XGrailToken
	2.2.1 Privileged Functions
	2.2.2 Issues & Recommendations

	2.3 Farm/YieldBooster
	2.3.1 Privileged Functions
	2.3.2 Issues & Recommendations

	2.4 Farm/NFTPool
	2.4.1 Privileged Functions
	2.4.2 Issues & Recommendations

	2.5 Farm/NFTPoolFactory
	2.5.1 Issues & Recommendations

	2.6 Farm/CamelotMaster
	2.6.1 Privileged Functions
	2.6.2 Issues & Recommendations

	2.7 Core/CamelotFactory
	2.7.1 Privileged Functions
	2.7.2 Issues & Recommendations

	2.8 Core/CamelotPair
	2.8.1 Privileged Functions
	2.8.2 Issues & Recommendations

	2.9 Core/UniswapV2ERC20
	2.9.1 Issues & Recommendations

	2.10 Core/Math, SafeMath and UQ112x112
	2.10.1 Issues & Recommendations

	2.11 Periphery/CamelotRouter
	2.11.1 Issues & Recommendations

	2.12 Periphery/UniswapV2Library
	2.12.1 Issues & Recommendations

